
A	Basic	Linux	Workshop	

©	Ziad	Matni,	2018	 1	 UCSB	Computer	Science	Dpt.	

By:	Ziad	Matni,	UCSB	

	

CONTENT	

	

1. Directory	structures	in	Linux	

a. Absolute	paths	vs.	Relative	paths	

b. .			vs			..	

	

2. Linux	file	management	commands	

a. man		

b. cd		

c. pwd		

d. ls	and	its	options	

e. cp	and	its	options	

f. rm	and	its	options	

g. mv		

h. du	

	

3. Linux	text	file	manipulation	commands	

a. cat		

b. more	and	less	

c. wc	and	its	options	

d. Directing	output	with	>	and	>>	

e. Doing	multiple	commands	at	once	using	;	

f. head	and	tail	

	

4. Linux	networking	commands	

a. ssh	

b. scp	

	

	 	

A	Basic	Linux	Workshop	

©	Ziad	Matni,	2018	 2	 UCSB	Computer	Science	Dpt.	

1. Directory	Structures	in	Linux	

	

	
Figure	1:	An	example	of	a	Linux	directory	tree	

	

Files	are	logical	collections	of	data	stored	in	a	computer’s	secondary	storage	(i.e.	its	hard	drive,	

or	on	a	“thumb”	drive,	etc.).	Directories	(also	called	folders)	are	constructs	where	multiple	files	

can	reside.	Other	directories	can	also	be	found	inside	directories.	

	

Think	of	the	organization	of	Linux	directories	as	a	tree	with	the	aptly	named	root	directory	

(symbol:	/).		

	

In	this	directory	reside	other	directories	(sometimes	called	sub-directories	or	sub-folders)	or	

stand-alone	files.	These,	in	turn,	also	have	directories	and	files	“beneath”	them.	

	

We	sometimes	call	these	“child”	and	the	directories	above	them	“parent”	directories.	

	

Absolute	pathnames	

When	referring	to	the	location	of	a	file	or	directory,	it	is	useful	to	“spell	out”	the	entire	“path”	to	

them,	starting	from	the	root	directory.	So,	for	example,	in	Figure	1,	there	is	a	file	depicted	in	the	

directory	tree	labeled	“test.c”.	The	absolute	pathname	of	this	file	would	be:	

/home/tux/test.c	

A	Basic	Linux	Workshop	

©	Ziad	Matni,	2018	 3	 UCSB	Computer	Science	Dpt.	

Regardless	of	where	a	file	or	a	directory	resides,	an	absolute	pathname	will	tell	us	where	it	is	

based	on	the	ultimate	reference:	the	root	directory.	The	example	above	tells	us	that,	from	the	

root	directory,	you	should	go	into	the	home	folder,	then	the	tux	folder,	which	is	where	you	will	

find	the	file	test.c.	

	

If	your	absolute	pathname	refers	to	a	folder,	then	the	convention	is	to	add	a	final	/	to	it.	For	

example,	if	referring	to	the	aforementioned	folder	“tux”,	you’d	say:	

/home/tux/	

	

Relative	pathnames	

When	you	want	to	indicate	the	location	of	a	file	or	a	folder	relative	to	where	you	are	in	a	

directory,	you	can	use	the	symbols	.	(for	current	directory)	or	..	(for	parent	directory	–	i.e.	the	

directory	“right	above”	where	I	am).	

	

So	if	you	were	in	a	folder	bin	inside	yxz,	which	is	in	the	home	directory	(i.e.	in	/home/yxz/bin/)	

and	wanted	to	refer	to	the	aforementioned	test.c	file	in	a	relative	way,	you’d	say:	

../../tux/test.c	

That	is,	go	“up”	to	the	parent	directory	from	where	I	am	now,	and	then	do	that	again,	then	go	

down	the	“tux”	directory	and	that’s	where	you’ll	find	“test.c”.	

	

If	you	wanted	to	execute	a	binary	file	(e.g.	an	already	compiled	file),	you	often	need	to	specify	

where	that	file	is,	even	if	it	resides	in	the	current	directory	(i.e.	where	you	currently	are).	For	

example,	a	binary	file	called	“program”	can	be	executed	using:	

./program	

A	Basic	Linux	Workshop	

©	Ziad	Matni,	2018	 4	 UCSB	Computer	Science	Dpt.	

2. Linux	file	management	commands	

In	Linux	the	following	commands	are	some	of	the	most	commonly	used	to	manage	files	and	

folders.	Here’s	a	handy	reference.	The	$	symbol	indicates	a	Linux	prompt.	

	

a) man	(show	manual)	

We’ll	start	with	this	command	because	you	can	use	it	to	learn	about	all	other	

commands!	

$	man	linux_command	 show	me	the	manual	for	linux_command	

	

b) cd	(change	directory)	

$	cd	 change	directory	back	to	/home	

$	cd	directory_name	 change	directory	to	directory_name	

$	cd	path_name	 change	directory	to	path_name	

$	cd	..	 change	directory	to	the	parent	directory	

	

c) pwd	(print	working	directory)	

$	pwd	 tell	me	where	I	am	(absolute	pathname)	

	

d) ls	and	its	options	(list)	

$	ls	 list	this	directory’s	files	and	folders	

$	ls	–a	 list,	incl.	hidden	files	and	folders	

$	ls	–l		 list,	in	“long”	format	(showing	more	details)	

$	ls	–al		 list,	in	“long”	format,	incl.	hidden	stuff	

$	ls	–lrt	 list,	in	“long”	format,	sorted	by	modified	time-stamp,	in	

reverse	order	

Many	other	options	exist	for	ls.	Use	man	ls	for	more	info.	

	

e) cp	and	its	options	(copy	file)	

$	cp	file_s	file_d	 create	a	copy	of	file	file_s	and	call	it	file_d	

$	cp	–r	dir_s	dir_d	 create	a	full	copy	of	directory	dir_s	and	call	it	dir_d	

See	man	cp	

A	Basic	Linux	Workshop	

©	Ziad	Matni,	2018	 5	 UCSB	Computer	Science	Dpt.	

f) rm	and	its	options	(remove	–	or	delete	–	file)	

$	rm	file	 remove	the	file	

$rm	–r	dir	 remove	the	directory		

See	man	rm	

	

g) mv	(move	–	or	rename	–	file)	

$	mv	file_or_dir	 move	file	or	directory	

See	man	mv	

h) du	(check	disk	use)	

$	du	-h	file_or_dir	 check	file	or	directory	size	

See	man	du	

	

3. Linux	text	file	manipulation	commands	

a) cat	(concatenate	file)	

$	cat	file	 print	to	screen	the	contents	of	the	text	file		

(no	stopping)	

See	man	cat	

	

b) more		

$	more	file	 print	to	screen	the	contents	of	the	text	file		

(stops	at	each	screen	length	and	waits	for	user	to	press	the	space	bar)	

See	man	more	and	man	less	(a	similar	command)	

	

c) wc	and	its	options	(word	count)	

$	wc	file	 print	the	number	of	words	in	the	text	file	

$	wc	–l	file	 print	the	number	of	lines	in	the	text	file	

See	man	wc	

	

A	Basic	Linux	Workshop	

©	Ziad	Matni,	2018	 6	 UCSB	Computer	Science	Dpt.	

d) Directing	output	with	>	

You	can	direct	the	outcome	of	a	Linux	command	to	a	text	file	(either	from	scratch	

or	as	an	append	to	an	existing	one).	For	example,	if	you	did:	

	 $	ls	–l	>	longlist.txt	

You’d	create	a	new	text	file	called	“longlist.txt”	that	would	contain	the	long	format	

of	the	list	of	the	current	directory.	

	

To	append	to	the	end	of	a	file,	instead	of	creating	a	new	one,		

use	>>	instead	of	>	

	

e) Multiple	commands	using	;	

You	can	do	multiple	commands	at	once	using	;	

For	example:	

$	ls	;	more	fileABC.txt	

This	will	list	the	current	directory	and	then	issue	a	more	command	on	the	text	file	

fileABC.txt.	

	

f) head	and	tail	and	its	options	

$	head	–n	10	file	 print	the	first	10	lines	in	the	text	file	

$	head	–c	10	file	 print	the	first	10	bytes	in	the	text	file	

$	tail	–n	10	file	 print	the	last	10	lines	in	the	text	file	

$	tail	–c	10	file	 print	the	last	10	bytes	in	the	text	file	

See	man	head;	man	tail	

	

	

A	Basic	Linux	Workshop	

©	Ziad	Matni,	2018	 7	 UCSB	Computer	Science	Dpt.	

4. Linux	networking	commands	–	or	–	How	to	Access	Your	CSIL	Account	From	a	Terminal	

Program	

	

Terminal	programs	can	be	found	natively	on	UNIX/Linux	OS	machines,	the	Mac	OS	(called	

“Terminal”)	and	on	Windows	10	(not	earlier	versions,	plus	you	have	to	activate	this	program	

first,	called	the	“bash”	terminal).	

	

Your	computer	is	called	“local”	and	the	CSIL	computer	(or	any	other	computer	that’s	not	yours	

and	that	you	want	to	connect	to)	is	called	“remote”.		

	

a) Logging	in	

1) From	a	terminal	prompt,	type:	$	ssh	yourname@csil-XX.cs.ucsb.edu		

where	yourname	is,	of	course,	your	CSIL/SoE	user	name	and	XX	is	a	2-digit	

number	between	01	and	48	(pick	any	one).	Be	careful	with	spelling	mistakes!	

2) You	will	be	asked	to	put	in	your	password,	after	which	you	will	be	logged	in.	

	

b) “Remote”	copying	a	file	from	your	CSIL	folders	to	your	own	computer’s	hard	drive		

1) Do	all	of	this	from	your	computer	(i.e.	don’t	do	the	ssh	first).	

2) From	a	terminal	prompt,	prepare	for	where	on	your	computer’s	local	drive	you	

want	to	copy	to	the	remote	CSIL	folder.		

	

$	cd	local_directory		

Where	local_directory	is	the	location,	for	example:	Desktop/csFolder,	or	

C:/BobbySue/MyCS_Stuff	

	

A	Basic	Linux	Workshop	

©	Ziad	Matni,	2018	 8	 UCSB	Computer	Science	Dpt.	

3) Then	type:		

$	scp	yourname@csil-XX.cs.ucsb.edu:~/remote_directory/filename	.	

Note	the	~	character	and	the	dot	(.)	at	the	end	of	the	command	–	you	must	have	

those	in	there.		

“remote_directory/filename”	is	called	the	directory	path	to	your	filename.	For	

example,	it	could	be	cs8/lab5/program.py	or	cs16/lab2/boxes.cpp.	

For	example:	
$	scp	jimbo@csil-11.cs.ucsb.edu:~/cs16/lab03/change.cpp	.	

	

c) “Remote”	copying	a	file	to	your	CSIL	folders	from	your	own	computer’s	hard	drive		

1) Do	all	of	this	from	your	computer	(i.e.	don’t	do	the	ssh	first).	

2) From	a	terminal	prompt,	prepare	for	where	on	your	computer’s	drive	is	the	local	

file	that	you	want	to	copy	the	remote	CSIL	folder.		

	

$	cd	local_directory		

Where	local_directory	is	the	location	of	the	file	you	want	to	copy	over,	for	example:	

Desktop/csFolder,	or	C:/BobbySue/MyCS_Stuff	

	

3) Then	type:	

$	scp		local_directory/filename			

	 yourname@csil-XX.cs.ucsb.edu:~/remote_directory/	

“remote_directory”	is	the	remote	directory	for	where	you	want	to	copy	your	

filename	to.	For	example,	it	could	be	cs8/lab5	or	cs16/lab2.	Again,	XX	is	a	2-digit	

number	between	01	and	48	(pick	any	one).	

	

For	example:	
$	scp	./myPrograms/change.cpp	jimbo@csil-11.cs.ucsb.edu:~/cs16/lab03/	

	

