
1

Computer Generation of Random Variables Based
on Transformation Method

Zexi Huang
Yingcai Honors College

University of Electornic Science and Technology of China

I. INTRODUCTION

Generating any random variables given their probability density function (PDF) or probability mass function (PMF) is
essential in computer-based signal analysis and processing. Here, we use the transformation method to generate the required
random variables and verify their relative properties. The remainder of this report is organized as follows: In the following
section, we briefly introduce the method of uniformly distributed psudo-random numbers. Section III presents method for
generating binomial random variables using transformation method, verify their validity and compare the efficiency between
several modified versions of algorithm. In Section IV, we use a special form of transformation method to generate two
independent normal random variables and test their normality and independence. Finally, we give a short discussion and
conclude in Section V.

Prior to detailed introduction, it is worth mentioning that the working environment is MATLAB 9.0.0.341360 (R2016a), and
all source codes (except for MT19937, which is coded in C++) included in the appendix are of that syntax.

II. UNIFORM RANDOM VARIABLES

The implementation of transformation method is based on uniform random variables between [0, 1] and the given cumulated
distribution function (CDF). Thus the first step of generating any type of random variables is to find a uniform random variable
generator.

A. Classic Generators

The most classic type of psudo-random number generator is the linear congruential generator (LCG), which is defined by
the recurrent relation

Xn+1 = (aXn + c) mod m (1)

where X is the sequence of pseudorandom values, and m > 0, the modulus, 0 < a < m, the multiplier, 0 ≤ c < m, the
increment, 0 ≤ X0 < m, the seed, are integer constants that specify the generator. If c = 0, the generator is often called a
multiplicative congruential generator (MCG), or Lehmer RNG. If c0, the method is called a mixed congruential generator.

The LCG is very easy to implement and require minimal memory (typically 32 or 64 bits) to retain state. However, its
period length is very limited (at best m, which is often m = 232 and m = 264), and it is predictable from a subsequence
because of the serial correlation and thus not suitable for Monte Carlo simulation and cryptography applications.

B. Mersenne Twister Generator

The Mersenne Twister (MT) algorithm is based on a matrix linear recurrence over a finite binary field F2. The algorithm
is a twisted generalised feedback shift register (twisted GFSR, or TGFSR) of rational normal form (TGFSR(R)), with state bit
reflection and tempering. The basic idea is to define a series xi through a simple recurrence relation, and then output numbers
of the form xiT , where T is an invertible F2 matrix called a tempering matrix [1].

Compared to LCG, MT has a very long period length (219937), which is enough for nearly any use of random numbers.
Plus, it is easy to be modified to become cryptographically capable, with efficiency similar to LCG. Thus, it is now most
popular RNG algorithm. In this article, we will use MT19937, a modified version of MT as our method to generate uniform
random variables. Since it is not our focus to generate random numbers, the detailed MT algorithm is omitted and the C++
code, twister.cpp to implement the algorithm is provided by the authors of the algorithm [1], as included in Appendix.

It’s noteworthy that a integer seed must be provided for twister every time when the MATLAB starts. It’s suggested to a
random seed like the current time. Thus we run twist(’state’,100*sum(clock)) to initialize the generator.

A sample of 50 random uniform variables in [0, 1] by calling twister(1,50) is listed in Table I.

Correspondence should be addressed to Z. Huang. E-mail: Eitima@163.com

2

TABLE I
A SAMPLE OF 50 UNIFORM RANDOM VARIABLES

0.557623 0.096574 0.728721 0.946501 0.548659 0.410843 0.017287 0.627216 0.230289 0.896297
0.224381 0.528917 0.042601 0.202466 0.696846 0.382712 0.464360 0.399971 0.817837 0.768933
0.887287 0.305046 0.486443 0.392051 0.423167 0.634413 0.174765 0.631697 0.150344 0.422200
0.806684 0.324624 0.197380 0.765630 0.732800 0.935835 0.302143 0.493050 0.181880 0.654789
0.823832 0.141927 0.486791 0.435605 0.864884 0.457860 0.747067 0.605341 0.627621 0.112581

III. BINOMIAL RANDOM VARIABLES

A. General Transformation Method

The algorithm of general transformation method to generate any required type of random variables given their PDF or PMF
is as follows:

1) Generate a uniformly distributed random number u in the interval [0, 1].
2) For random variable X with CDF F (x), find x such that F (x) = u or x = F−1(u).Then x is the required random

variable specified by F (x).
Note that since the close form of F−1(u) is in most cases, not readily available, we adopt a numeric method, that is, finding

the minimum x such that F (x) ≥ u. Also, we dont necessarily need the close form for F (x) as we note F (x) =
x∑

y=xi

f(y)

for discrete random variables and F (x) =
x∫
−∞

f(y)dy.

B. Generation

The PMF of a binomial random X with parameter n and p is

f(x) = Cx
np

x(1− p)n−x, 0 ≤ x ≤ n, x ∈ N∗ (2)

Note that the close form of the PMF is not readily available, we apply

F (x) =


bxc∑
y=0

f(y), 0 ≤ x ≤ n

1, x > n

0, x < 0

(3)

for evaluation.
BinomialGenerator.m illustrates the approach of generating any given number N of Binomial random variables with

probability of success p and number of trials n according to the transformation method. A sample of N = 50X ′s with
n = 100, p = 0.6 is in Table II. During the generation process of large N (for example N = 1000), the cost of calculating Cx

n

TABLE II
A SAMPLE OF 50 BINOMIAL RANDOM VARIABLES

58 55 54 56 66 54 60 64 54 54 62 59 49 67 64 51 59 65 68 55 58 68 64 58 60
57 66 57 56 53 61 65 54 65 52 60 53 62 62 62 59 60 61 62 51 58 54 63 54 62

is overwhelmingly expensive. In our environment, it can take nearly half an hour (1703.360s) to finish the calculation and thus
obviously unacceptable. In addition, calculating Cx

n for large n leads to loss of accuracy since this coefficient can be much
larger than 9× 1015 and in MATLAB it is reduced to only the first 15 digits.

Hence, we consider three alternatives to solve the problem.
1) Generate from Bernoulli Random Variables: Since binomial random variable is defined as the number of successes of a

series of Bernoulli trials, we could sum Bernoulli random variables up to obtain binomial random variables, that is,

X =

n∑
i=1

Yi (4)

where X denotes a binomial random variables with parameters n and p, and Yi denotes a mutually independent Bernoulli
random variables with probability of success p, whose PMF and CDF are

f(y) =

{
p, y = 1

1− p, y = 0
(5)

3

and

F (y) =


0, y < 0

1− p, 0 ≤ y < 1

1, y ≥ 1

(6)

Thus, we could first use transformation method to generate Bernoulli random variables with the same p as required for
binomial random variables and then count the number of success among n independent Bernoulli random variables, which
leads to the required binomial random variable. BernoulliGenerator.m illustrates the approach of generating any given number
n of Bernoulli random variables with probability of success p according to the transformation method and based on that,
CountSuccessBinomialGenerator.m shows the process of generating binomial random variables in this way.

In our environment, the process of generating a N = 1000 sample lasts only for seconds (1.744s), thus is is indeed an
acceptable method.

A further examination of the built-in generator binornd.m indicates that it adopts the same method, that is, generating values
as a sum of Bernoulli random variables. The efficiency and other issues of this method is discussed in detail in [2].

2) Approximate the CDF with normal PDF: Note that np = 60 > 5 and n(1 − p) = 40 > 5 in our case, the normal
approximation to the binomial distribution is guaranteed to be of good precision. Thus, with continuity correction applied, we
have

F (x) = P (X ≤ x) = P (Z ≤ x+ 0.5− np√
np(1− p)

) (7)

This and the next methods are implemented in BinomialGeneratorDiscussion.m with mode = 1, 2 respectively. This method
usually requires half a minute (28.631s) to finish.

3) Directly use built-in functions for calculating binomial PMF: The built-in solution for PMF of binomial distribution
f(x) is binopdf.m which is based on a saddle point expansion [3]:

log(f(x;n, p)) = log(f(x;n,
x

n
))−D(x;n, p) (8)

where the deviance D(x;n, p) is defined as

D(x;n, p) = log(f(x;n,
x

n
))− log(f(x;n, p)) = x log(

x

np
) + (n− x) log(

n− x
n(1− p)

) (9)

A generation method using the built-in binomial PMF requires several minutes (294.399s) to finish.

C. Verification

For the rest part of this problem, for efficiency and accuracy, all random variables are generated through the approach in
Subsubsection III-B1 instead of the general transformation method in Subsection III-B.

1) Numerical Characteristics: Execute CountingSuccessBinomialGenerator.m with N = 1000, n = 100 and p = 0.6, we
generate a sample of 1000 binomial random variables X with theoretic mean

µ = np = 60 (10)

and variance
σ2 = np(1− p) = 24. (11)

Passing X to MeanVariance.m, we have

x̄ =

n∑
i=1

xi

n
= 60.0460, s2 =

n∑
i=1

(xi − x̄)2

n− 1
= 24.7787 (12)

which are consistent with Equation 10 and Equation 11.
2) Normalized Histogram: The normalized histogram of the sample is a good approximation to the PMF of the population

as long as the size of the sample is fairly big enough.The drawing process is accomplished by DrawingHistogram1.m. The
second parameter width is to determine the width for each bin. The different choice of width may have critical influence on
the shape of the histogram. Apart from the normalized histogram, this program also draws the theoretic PMF of PDF of that
distribution for comparison.

Running DrawingHistogram.m with generated X , width = 1, we have the output figure as Figure 1.

4

40 45 50 55 60 65 70 75 80

x

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

R
e

la
ti
v
e

 F
re

q
u

e
n

c
y

Normalized Histogram of 1000 Binomial Random Samples

Normalized histogram

Theoretic PMF

Fig. 1. Normalized Histogram for 1000 Binomial Random Samples.

3) Common Verification Fallacies: In Figure 1, it is clear that the sample approximately follows a binomial distribution.
However, we still need statistical methods to verify it. Students turn to use covariance or correlation coefficient between samples
generated from standard generator and their generator to evaluate whether they succeed or not, which is a complete mistake
theoritically and practically.

The first common fallacy is to directly compute correlation coefficient between two generated samples.
Theoritically speaking, a generator always generates independent random samples from a given distribution. After all, it

can’t be called a random variable generator if the present sample is related to previous ones. Thus, even two samples X1, X2

of N random variables generated from the standard generator are independent and thus uncorrelated, that is

lim
N→∞

cov(X1, X2) = 0 (13)

In practice, ExplainningCommonFallacy.m computes correlation coefficents between various generated samples to indicate
these commmon fallacies. Run that with mode = 1, we compute the correlation coefficient between two sample sets. Both are
generated from standard binomial random variable generator binornd.m, with N = 1000, n = 100 and p = 0.6. The return
value is

ρ =
cov(X1, X2)

s1s2
= −0.0066 ≈ 0 (14)

As is obvous in Equation 14, there is no correlation between samples generated from the same standard generator.
The second common fallacy is to compute correlation coefficient between two sorted generated samples (say, in an incresing

order).
This method seems swifter than the first one but still lacks both theoretical background and practical meanings. In fact,

when sorted, the samples become first order statistics. And respective PMF becomes [4]

fk(xk) =
n!

(k − 1)!(n− k)!
[F (xk)]k−1[1− F (xk)]n−kf(xk) (15)

where xk is the kth order statistic. Therefore, the theoretic covariance is computed by

cov(X1, X2) = E(

N∑
k=0

(x1k − x̄1)(x2k − x̄2)

sx1sx2
) (16)

where x1k and x2k are kth order sample from X1 and X2 and follow distribution from Equation 15. Theoritic value of
Equation 16 is hard to evaluate but what we need to know is that it has nothing to do with the validity of the generator.

5

Run ExplainningCommonFallacy.m with mode = 2, we compute the the correlation coefficient between two binomial sample
sets with N1 = N2 = 1000, n1 = n2 = 100, p1 = 0.1, p2 = 0.9 respectively. The return value is

ρ =
cov(X1, X2)

s1s2
= 0.9800 (17)

We see that even if the two distribution is different to a very large extent, the correlation coefficient is still large.

D. Non-parametric Hypothesis Test

A systematic approach to test whether the samples fit a given distribution is Pearson’s χ2 test. It tests a null hypothesis
H0 stating that the frequency distribution of certain events observed in a sample is consistent with a particular theoretical
distribution. The test statistic is

χ2 =

n∑
i=1

(Oi − Ei)
2

Ei
= N

n∑
i=1

(Oi/N − pi)
pi

(18)

where Oi is the number of observations in category i, Ei = Npi is the expected frequency of type i, asserted by the null
hypothesis that the fraction of type i in the population is pi and N is the total number of observations (sample size). Then the
test statistic follows a χ2 distribution with degree of freedom n − 1 − p, where p is the number of the unknown parameters
of the distribution if H0 is ture, which would be replaced by their maximum likelihood estimates in the calculation process.

NonParametricHypothesisTest.m implements all the non-parameter tests for this and following problem. Here, we test whether
our generated sample X fits the theoretical distribution. Run NonParametricHypothesisTest.m with X and mode = 1, we have
our hypothesis result and respective p value.

Accept H0, p = 0.8858 (19)

Thus, we can’t rejct H0, which indicates the frequency distribution from our samples is consistent with the theoritical one.

IV. TWO INDEPENDENT NORMAL RANDOM VARIABLES

A. Generation

Here, we apply a special form of transformation method to generate two independent normal random variables. As long as
X1 adn X2 are two independent uniform random variables,

Y1 = σ
√
−2 lnX1 cos(2πX2) +m (20)

Y2 = σ
√
−2 lnX1 sin(2πX2) +m (21)

are two independent normal random variables with E(Y1) = E(Y2) = m, V (Y1) = V (Y2) = σ2.
NormalGenerator.m illustrates the approach of generating N samples of two independent normal random variable with

parameter m and σ. Table III and Table IV records two sets of 50 normal random samples Y1 and Y2 with m = 1 and σ = 2.

TABLE III
A SAMPLE OF 50 NORMAL RANDOM VARIABLES, FIRST SET

1.84735 -1.04541 1.28496 1.00590 -0.75245 1.32464 0.93434 -1.03333 0.15877 -0.14319
2.81723 -0.09764 2.28270 2.06963 -2.96432 -1.08785 0.30621 3.78081 3.77749 3.15242
0.59305 0.53039 1.96144 2.89554 1.48787 2.92631 -2.66943 1.17166 1.82833 0.27576
2.73823 3.92442 -0.11542 2.39502 -1.64079 2.18286 1.17879 0.87407 -0.52520 1.68041

-0.75731 1.14655 -2.55063 -2.64490 -1.03768 1.43336 -1.29162 2.69257 2.95180 -0.43551

TABLE IV
A SAMPLE OF 50 NORMAL RANDOM VARIABLES, SECOND SET

-0.45481 -0.80005 1.90802 1.55385 1.28825 2.48323 0.94621 2.11215 1.70294 3.24939
-1.67786 1.68190 2.15890 0.21632 1.29920 -0.26320 -0.17812 -2.26349 1.42435 1.21952
-0.44189 -1.72672 0.02997 0.28586 1.95675 -0.87463 -0.40302 0.78905 -0.15996 -3.33380
-0.53905 3.89746 -0.87898 0.99720 -1.90732 -1.33349 -1.74078 -0.17804 -0.87675 0.41310
2.86881 0.90354 3.31284 3.19603 0.33660 -0.63267 3.04379 1.29074 1.78196 2.45101

6

B. Verification

1) Numberical Characteristics: Execute NormalGenerator.m with N = 1000, m = 1 and σ = 2, we generate two sets of
1000 binomial random samples Y1 and Y2 with theoretic mean and variance E(Y1) = E(Y2) = 1 and V (Y1) = V (Y2) = 4.

Passing Y1 and Y2 to MeanVariance.m, we have

ȳ1 = 1.1198, ȳ2 = 0.9554 (22)
s21 = 4.0348, s22 = 3.7386 (23)

which are consistent with the theoretical values.
In addition, we compute their correlation coefficient by calling corrcoef(Y1,Y2) and get

ρ = 0.0046 (24)

which shows that Y1 and Y2 is approximately uncorrelated.

C. Normalized Histogram

Run HistogramDrawing2.m with Y1, Y2 and width = 0.5, we have the histograms as well as the theoretic PDF in Figure 2.

-8 -6 -4 -2 0 2 4 6 8

y
1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y
 D

e
n
s
it
y

Normalized Histogram of 1000 Normal Random Samples, First Set

Normalized histogram

Theoretic PDF

-8 -6 -4 -2 0 2 4 6 8

y
2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

R
e
la

ti
v
e
 F

re
q
u
e
n
c
y

Normalized Histogram of 1000 Normal Random Samples, Second Set

Normalized histogram

Theoretic PDF

Fig. 2. Normalized Histogram for Two Sets of 1000 Random Samples.

D. Verification

1) Test of Normality: Again, we use Pearson’s χ2 test to check whether these two sample sets follows the theoretical normal
distribution. Run NonParametricHypothesisTest.m with previous Y1 and Y2 with mode = 2, we have

Accept H0, p = 0.8107 for Y1 (25)
Accept H0, p = 0.8009 for Y2 (26)

Thus, we can’t reject H0 and conclude that Y1 and Y2 follow the theoretical distribution.
2) Test of Independence: The systematic approach to test independence between two samples is another important application

of Pearson’s χ2 test. In that case, the two samples are considered together as a sample of 2-turples, where the first dimension is
consisted of r categories and the second s. Then it tests a null hypothesis H0 stating that the frequency of observations falling
into ith category of the first dimension and jth category of the second is exactly the same as the frequency of ith category of
the first multiplies that of jth category of the second, that is

H0 : P (Y1 ∈ Categoryi, Y2 ∈ Categoryj) = P (Y1 ∈ Categoryi)P (Y2 ∈ Categoryj) (27)

Then, the constructed test statistic is

χ2 =

r∑
i=1

s∑
j=1

(nij −
ni∗n∗j
n

)2/
ni∗n∗j
n

(28)

where nij is the number of obeservations falling into both ith category of the first dimension and jth category of the second,
ni∗, n∗j is the number of obeservations falling into ith category of the first dimension and jth category of the second dimension

7

respectively and n is the total number of observations. Then the test statistic follows a χ2 distribution with degree of freedom
(r − 1)(s− 1).

In our test, we first divide the two sets of normal random samples into 6 categories each accroding to their values, that is

(−∞,m− 2σ), [m− 2σ,m− σ), [m− σ,m), [m,m+ σ), [m+ σ,m+ 2σ), [m+ 2σ,+∞)

Run IndependenceTest.m with generated Y1 and Y2, we have the generated contigency table as Table V and the test result is

Accept H0, p = 0.5588 (29)

TABLE V
CONTIGENCY TABLE FOR TEST OF INDEPENDENCE BETWEEN Y1 AND Y2

Y2

Y1
(−∞,m− 2σ] [m− 2σ,m− σ) [m− σ,m) [m,m+ σ) [m+ σ,m+ 2σ) [m+ 2σ,+∞) Total

(−∞,m− 2σ] 1 3 5 4 1 0 14

[m− 2σ,m− σ) 0 21 61 46 29 5 162

[m− σ,m) 5 45 110 118 43 8 329

[m,m+ σ) 12 41 120 111 40 9 333

[m+ σ,m+ 2σ) 3 21 48 47 20 0 139

[m+ 2σ,+∞) 1 1 10 8 3 0 23

Total 22 132 354 334 136 22 1000

Thus, we can’t reject H0 and conclude that Y1 and Y2 are mutually independent.

V. CONCLUSION

In this article, we introduce methods for generating psudo-random numbers, generate typical random variables using
transformation method based on them, and apply statistical hypothesis tests two verify that they have satisfied the requirements.
In addition, we extend our discussion to the efficiency and accuracy of different generation methods, analyze the algorithms
of MATLAB built-in random variable generators and also explainning some common fallacies when verifying the generated
samples follow a certain distribution. The whole project is insightful and can serve as the first step for newcomers in the field
of probability and signal analysis.

ACKNOWLEDGEMENT

The author would like to express his gratitude to Dr. S.C. Wu in National Tsing Hua University, who briefly introduced the
transformation method and supervised part of this project, and Dr Y. Song in University of Electronic Science and Technology
of China, under whose supervision and guidance the most part of this project was conducted.

REFERENCES

[1] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator,” ACM Transactions
on Modeling and Computer Simulation (TOMACS), vol. 8, no. 1, pp. 3–30, 1998.

[2] L. Devroye, “Sample-based non-uniform random variate generation,” in Proceedings of the 18th conference on Winter simulation. ACM, 1986, pp.
260–265.

[3] C. Loader, “Fast and accurate computation of binomial probabilities,” 2000.
[4] H. A. David and H. N. Nagaraja, Order statistics. Wiley Online Library, 1981.

APPENDIX

The source codes are listed here for reference.
1) BernoulliGenerator.m

1 %{
2 %G e n e r a t i n g n B e r n o u l l i random v a r i a b l e s wi th p r o b a b i l i t y o f s u c c e s s p .
3 %Zexi Huang
4 %Oct . 4 2016
5 %}
6

7 f u n c t i o n Y= B e r n o u l l i G e n e r a t o r (n , p)
8 %n : number o f o u t p u t random v a r i a b l e s .
9 %p : p r o b a b i l i t y o f s u c c e s s .

10

11 %CDF of B e r n o u l l i RV.
12 f u n c t i o n F=CDF(x)

8

13 i f x<0
14 F =0;
15 e l s e i f x>=1
16 F =1;
17 e l s e
18 F=1−p ;
19 end
20 end
21

22 %Numer ica l a p p r o a c h of t h e i n v e r s e CDF .
23 f u n c t i o n G=InverseCDF (u)
24 x = [0 , 1] ;
25 f o r s=x
26 i f CDF(s)>=u
27 G=s ;
28 b r e a k ;
29 end
30 end
31 end
32

33 %G e n e r a t i o n p r o c e s s
34 f o r i i =n :−1:1
35 %Seemingly more e f f i c i e n t t h a n t from 1 t o n . Array s i z e on ly changed
36 %once i n t h e loop .
37 u= t w i s t e r () ;
38 Y(i i) = InverseCDF (u) ;
39 end
40

41 end

2) BinomialGenerator.m

1 %{
2 %G e n e r a t i n g N b i n o m i a l random v a r i a b l e s wi th p a r a m e t e r p and n .
3 %Zexi Huang
4 %Oct . 4 2016
5 %}
6

7 f u n c t i o n X= B i n o m i a l G e n e r a t o r (N, n , p)
8 %N: number o f o u t p u t random v a r i a b l e s .
9 %n : number o f t r i a l s .

10 %p : p r o b a b i l i t y o f s u c c e s s .
11

12 %PMF of b i n o m i a l RV.
13 f u n c t i o n f =PMF(x)
14 f = nchoosek (n , x) ∗p ˆ x∗(1−p) ˆ (n−x) ;
15 end
16

17 %CDF of b i n o m i a l RV (e v a l u a t i o n) .
18 f u n c t i o n F=CDF(x)
19 i f x<0
20 F =0;
21 e l s e i f x>n
22 F =1;
23 e l s e
24 F =0;
25 f o r i i =1 : f l o o r (x)
26 F=F+PMF(i i) ;
27 end
28 end
29 end
30

31 %Numer ica l a p p r o a c h of t h e i n v e r s e CDF .
32 f u n c t i o n G=InverseCDF (u)
33 x =0: n ;
34 f o r s=x
35 i f CDF(s)>u
36 G=s ;
37 b r e a k ;
38 end
39 end
40 end
41

42 %G e n e r a t i o n p r o c e s s
43 %Seemingly more e f f i c i e n t t h a n t from 1 t o n . Array s i z e on ly changed
44 %once i n t h e loop .
45 f o r j j =N:−1:1

9

46 u= t w i s t e r () ;
47 X(j j) = InverseCDF (u) ;
48 end
49

50 end

3) BinomialGeneratorDiscussion.m
1 %{
2 %G e n e r a t i n g N Binomia l random v a r i a b l e s wi th p a r a m e t e r p and n wi th two
3 %a l t e r n a t i v e a p p r o a c h e s .
4 %Zexi Huang
5 %Oct . 4 2016
6 %}
7 f u n c t i o n X= B i n o m i a l G e n e r a t o r D i s c u s s i o n (N, n , p , mode)
8 %N: number o f o u t p u t random v a r i a b l e s .
9 %n : number o f t r i a l s .

10 %p : p r o b a b i l i t y o f s u c c e s s .
11 %mode =1: Approximate wi th normal PDF .
12 %mode =2: Use b u i l t−i n b i n o p d f .
13

14 %PMF of b i n o m i a l RV.
15 f u n c t i o n f =PMF(x)
16 s w i t c h mode
17 c a s e {1}
18 f =normpdf (x , n∗p , s q r t (n∗p∗(1−p))) ;
19 c a s e {2}
20 f = b i n o p d f (x , n , p) ;
21 end
22 end
23

24 %CDF of b i n o m i a l RV (e v a l u a t i o n) .
25 f u n c t i o n F=CDF(x)
26 i f (x<0)
27 F =0;
28 e l s e i f x>n
29 F =1;
30 e l s e
31 F =0;
32 f o r i i =1 : f l o o r (x)
33 F=F+PMF(i i) ;
34 end
35 end
36 end
37

38 %Numer ica l a p p r o a c h of t h e i n v e r s e CDF .
39 f u n c t i o n G=InverseCDF (u)
40 x =0: n ;
41 f o r s=x
42 i f CDF(s)>u
43 G=s ;
44 b r e a k ;
45 end
46 end
47 end
48

49

50 %G e n e r a t i o n p r o c e s s
51 %Seemingly more e f f i c i e n t t h a n t from 1 t o n . Array s i z e on ly changed
52 %once i n t h e loop .
53 f o r j j =N:−1:1
54 u= t w i s t e r () ;
55 X(j j) = InverseCDF (u) ;
56 end
57

58 end

4) CountingSuccessBinomialGenerator.m
1 %{
2 %G e n e r a t i n g N Binomia l random v a r i a b l e s wi th p a r a m e t e r p and n based on
3 %g e n e r a t e d i n d e p e n d e n t B e r n o u l l i random v a r i a b l e s wi th same p a r a m e t e r p .
4 %Zexi Huang
5 %Oct . 4 2016
6 %}
7

8 f u n c t i o n X= C o u n t i n g S u c c e s s B i n o m i a l G e n e r a t o r (N, n , p)
9 %N: number o f o u t p u t random v a r i a b l e s .

10

10 %n : number o f B e r n o u l l i random v a r i a b l e s t o be c o u n t e d .
11 %p : p r o b a b i l i t y o f s u c c e s s .
12

13 %Count ing number o f s u c c e s s i n y .
14 f u n c t i o n c o u n t = Coun tSucces s (y)
15 c o u n t =0 ;
16 f o r x=y
17 i f x==1
18 c o u n t = c o u n t +1 ;
19 end
20 end
21 end
22

23 %G e n e r a t i o n p r o c e s s
24

25 f o r i i =N:−1:1
26 y= B e r n o u l l i G e n e r a t o r (n , p) ;
27 X(i i) = Coun tSucces s (y) ;
28 end
29

30 end

5) DrawingHistogram1.m
1 %{
2 %Drawing n o r m a l i z e d h i s t o g r a m d e r i v e d from a sample o f b i n o m i a l d i s t r i b u t i o n
3 %and compare i t w i th t h e o r i t i c PMF.
4 %Zexi Huang
5 %Oct . 5 2016
6 %}
7

8 f u n c t i o n DrawingHis togram1 (X, wid th)
9 %X: sample o f random v a r i a b l e s t o be drawn .

10 %wid th : wid th o f each b i n .
11

12

13 %Produce h i s t o g r a m .
14 [ne l emen t s , x c e n t e r s]= h i s t (X , (r a n g e (X) +1) / wid th) ;
15 b a r (x c e n t e r s , n e l e m e n t s / (wid th∗ l e n g t h (X)) , 1) ;
16 x l a b e l (’ x ’) ;
17 y l a b e l (’ R e l a t i v e Frequency ’) ;
18 ho ld on ;
19

20 %Produce r e s p e c t i v e f i g u r e .
21 p l o t (4 0 : 8 0 , b i n o p d f (4 0 : 8 0 , 1 0 0 , 0 . 6) , ’ r ’ , ’ LineWidth ’ , 1 . 5) ;
22 l e g e n d (’ Normal ized h i s t o g r a m ’ , ’ T h e o r e t i c PMF ’) ;
23 t i t l e (’ Normal ized His togram of 1000 Binomia l Random Samples ’) ;
24

25 ho ld o f f ;
26

27

28 end

6) DrawingHistogram2.m
1 %{
2 %Drawing n o r m a l i z e d h i s t o g r a m d e r i v e d from two samples o f normal d i s t r i b u t i o n
3 %and compare them wi th t h e i r t h e o r i t i c PMF.
4 %Zexi Huang
5 %Oct . 5 2016
6 %}
7

8 f u n c t i o n DrawingHis togram2 (Y1 , Y2 , wid th)
9 %Y1 , Y2 : sample o f random v a r i a b l e s t o be drawn .

10 %wid th : wid th o f each b i n .
11

12 %Produce f i g u r e f o r Y1 .
13 s u b p l o t (1 , 2 , 1) ;
14 [ne l emen t s , x c e n t e r s]= h i s t (Y1 , (r a n g e (Y1) +1) / wid th) ;
15 b a r (x c e n t e r s , n e l e m e n t s / (wid th∗ l e n g t h (Y1)) , 1) ;
16 x l a b e l (’ y 1 ’) ;
17 y l a b e l (’ R e l a t i v e Frequency D e n s i t y ’) ;
18 ho ld on ;
19 p l o t (−5 : 0 . 0 1 : 7 , normpdf (−5 : 0 . 0 1 : 7 , 1 , 2) , ’ r ’ , ’ LineWidth ’ , 1 . 5) ;
20 l e g e n d (’ Normal ized h i s t o g r a m ’ , ’ T h e o r e t i c PDF ’) ;
21 t i t l e (’ Normal ized His togram of 1000 Normal Random Samples , F i r s t S e t ’) ;
22 %s e t (gca , ’ XTick ’ , −1 0 : 1 : 1 0) ;
23 a x i s ([−8 8 0 0 . 2]) ;

11

24

25

26 %Produce f i g u r e f o r Y2 .
27 s u b p l o t (1 , 2 , 2) ;
28 [ne l emen t s , x c e n t e r s]= h i s t (Y2 , (r a n g e (Y2) +1) / wid th) ;
29 b a r (x c e n t e r s , n e l e m e n t s / (wid th∗ l e n g t h (Y2)) , 1) ;
30 x l a b e l (’ y 2 ’) ;
31 y l a b e l (’ R e l a t i v e Frequency ’) ;
32 ho ld on ;
33 p l o t (−5 : 0 . 0 1 : 7 , normpdf (−5 : 0 . 0 1 : 7 , 1 , 2) , ’ g ’ , ’ LineWidth ’ , 1 . 5) ;
34 l e g e n d (’ Normal ized h i s t o g r a m ’ , ’ T h e o r e t i c PDF ’) ;
35 t i t l e (’ Normal ized His togram of 1000 Normal Random Samples , Second S e t ’) ;
36 %s e t (gca , ’ XTick ’ , −1 0 : 1 : 1 0) ;
37 a x i s ([−8 8 0 0 . 2]) ;
38

39 ho ld o f f ;
40

41

42 end

7) ExplainingCommonFallacy.m
1 %{
2 %E x p l a i n common f a l l a c y i n p r a c t i c e .
3 %Zexi Huang
4 %Oct . 5 2016
5 %}
6 f u n c t i o n c o e f = Expla in ingCommonFal lacy (mode)
7 %mode : d e t e r m i n e s which s e t o f c o e f f i c i e n t t o r e t u r n .
8

9

10 %G e n e r a t i n g samples o f RV and compute t h e i r c o r r e l a t i o n c o e f f i c i e n t .
11 s w i t c h mode
12 c a s e {1}
13 X1= b i n o r n d (1 0 0 , 0 . 6 , 1 0 0 0 , 1) ;
14 X2= b i n o r n d (1 0 0 , 0 . 6 , 1 0 0 0 , 1) ;
15

16 c a s e {2}
17 % x=1∗ ones (5 0 0 0 0 0 0 , 1) ;
18 % X1= c h i 2 r n d (x) ;
19 % X1= s o r t (X1) ;
20 % y= z e r o s (5 0 0 0 0 0 0 , 1) ;
21 % X2=normrnd (y , x) ;
22 % X2= s o r t (X2) ;
23 X1= b i n o r n d (1 0 0 , 0 . 1 , 1 0 0 0 , 1) ;
24 X1= s o r t (X1) ;
25 X2= b i n o r n d (1 0 0 , 0 . 9 , 1 0 0 0 , 1) ;
26 X2= s o r t (X2) ;
27 end
28

29 c o e f = c o r r c o e f (X1 , X2) ;
30 c o e f = c o e f (1 , 2) ;
31 end

8) IndependenceTest.m
1 %{
2 %I n d e p e n d e n t t e s t be tween two normal random samples .
3 %Zexi Huang
4 %Oct . 6 2016
5 %}
6

7 f u n c t i o n [t a b l e , h , p]= I n d e p e n d e n c e T e s t (Y1 , Y2)
8 %Y1 , Y2 : two s e t s random samples t o be t e s t e d .
9 %t a b l e : t h e o u t p u t c o n t i g e n c y t a b l e .

10 %h : whe the r t h e t e s t i s r e j e c t e d , 1 i n d i c a t e s r e j e c t e d .
11 %p : p−v a l u e o f t h e t e s t .
12

13 %Computing mean , sample s t a n d a r d d e v i a t i o n and l e n g t h s o f Y1 , Y2
14 [m1 , v1]= MeanVariance (Y1) ;
15 [m2 , v2]= MeanVariance (Y1) ;
16 s1= s q r t (v1) ;
17 s2= s q r t (v2) ;
18 n1=numel (Y1) ;
19 n2=numel (Y2) ;
20

21 %R e p l a c i n g v a l u e s wi th c a t e g o r y l a b e l s .
22 f o r i i =1 : n1

12

23 i f (Y1 (i i)<m1−2∗s1)
24 Y1 (i i) =1 ;
25 e l s e i f (Y1 (i i)<m1−s1)
26 Y1 (i i) =2 ;
27 e l s e i f (Y1 (i i)<m1)
28 Y1 (i i) =3 ;
29 e l s e i f (Y1 (i i)<m1+s1)
30 Y1 (i i) =4 ;
31 e l s e i f (Y1 (i i)<m1+2∗ s1)
32 Y1 (i i) =5 ;
33 e l s e
34 Y1 (i i) =6 ;
35 end
36 end
37

38 f o r i i =1 : n2
39 i f (Y2 (i i)<m2−2∗s2)
40 Y2 (i i) =1 ;
41 e l s e i f (Y2 (i i)<m2−s2)
42 Y2 (i i) =2 ;
43 e l s e i f (Y2 (i i)<m2)
44 Y2 (i i) =3 ;
45 e l s e i f (Y2 (i i)<m2+s2)
46 Y2 (i i) =4 ;
47 e l s e i f (Y2 (i i)<m2+2∗ s2)
48 Y2 (i i) =5 ;
49 e l s e
50 Y2 (i i) =6 ;
51 end
52 end
53

54

55 %Produce t h e c o n t i g e n c y t a b l e and do t h e c h i 2 t e s t .
56 [t a b l e , ch i2 , p]= c r o s s t a b (Y1 , Y2) ;
57

58 i f (p<0.05)
59 h =1;
60 e l s e
61 h =0;
62 end
63

64 end

9) MeanVariance.m
1 %{
2 %C a l c u l a t i n g mean and v a r i a n c e f o r g i v e n random samples .
3 %Zexi Huang
4 %Oct . 5 2016
5 %}
6 f u n c t i o n [mean , v a r i a n c e]= MeanVariance (X)
7 %X: an a r r a y o f random samples .
8 %mean , v a r i a n c e : sample mean and sample v a r i a n c e .
9

10 %S i z e o f sample .
11 n=numel (X) ;
12

13 %Mean of sample .
14 mean=sum (X) / n ;
15

16 %V a r i a n c e o f sample .
17 v a r i a n c e =0;
18 f o r j j =1 : n
19 v a r i a n c e = v a r i a n c e +(X(j j)−mean) ˆ 2 ;
20 end
21 v a r i a n c e = v a r i a n c e / (n−1) ;
22

23 end

10) NonParametricHypothesisTest.m
1 %{
2 %Non−p a r a m e t e r h y p o t h e s i s t e s t f o r good of f i t and i n d e p e n d e n c e .
3 %Zexi Huang
4 %Oct . 5 2016
5 %}
6

7 f u n c t i o n [h , p]= N o n P a r a m e t r i c H y p o t h e s i s T e s t (X, mode)

13

8 %X: sample o f random v a r i a b l e s t o be t e s t e d .
9 %mode : d e t e r m i n e s which t e s t i s used .

10 %h : whe the r t h e t e s t i s r e j e c t e d , 1 i n d i c a t e s r e j e c t e d .
11 %p : p−v a l u e o f t h e t e s t .
12

13 %G e n e r a t e s t a n d a r d pdf .
14 s w i t c h mode
15 c a s e {1}
16 pd= m a k e d i s t (’ B inomia l ’ , ’N’ ,100 , ’ p ’ , 0 . 6) ;
17 [h , p]= c h i 2 g o f (X, ’CDF ’ , pd , ’ C t r s ’ , [4 5 , 5 0 , 5 5 , 6 0 , 6 5 , 7 0 , 7 5]) ;
18 c a s e {2}
19 pd= m a k e d i s t (’ Normal ’ , ’mu ’ , 1 , ’ s igma ’ , 2) ;
20 [h , p]= c h i 2 g o f (X, ’CDF ’ , pd) ;
21

22 end
23

24 %H y p o t h e s i s t e s t .

11) NormalGenerator.m
1 %{
2 %G e n e r a t i n g N normal random v a r i a b l e s wi th g i v e n mean and s t a n d a r d
3 %d e v i a t i o n .
4 %Zexi Huang
5 %Oct . 5 2016
6 %}
7

8 f u n c t i o n [Y1 , Y2]= Norma lGene ra to r (N, mean , sd)
9 %N: number o f random v a r i a b l e s t o be g e n e r a t e d .

10 %mean : mean of r e q u i r e d normal d i s t r i t b u i o n .
11 %sd : s t a n d a r d d e v i a t i o n o f r e q u i r e d normal d i s t r i t b u i o n .
12

13 %G e n e r a t e un i fo rm random v a r i a b l e s s e q u e n c e .
14 X1= t w i s t e r (N, 1) ;
15 X2= t w i s t e r (N, 1) ;
16

17 %G e n e r a t e normal random v a r i a b l e s .
18 Y1=sd∗ s q r t (−2∗ l o g (X1)) .∗ cos (2∗ p i ∗X2) +mean ;
19 Y2=sd∗ s q r t (−2∗ l o g (X1)) .∗ s i n (2∗ p i ∗X2) +mean ;
20

21 end

12) twister.cpp
1 # i n c l u d e ”mex . h ”
2 # i n c l u d e ” m a t r i x . h ”
3 # i n c l u d e <math . h>
4 # i n c l u d e <s t r i n g . h>
5 # i n c l u d e <c t y p e . h>
6

7

8 /∗ ∗∗∗
9 ∗

10 ∗ Mersenne T w i s t e r code :
11 ∗ /
12

13

14 /∗
15 A C−program f o r MT19937 , wi th i n i t i a l i z a t i o n improved 2 0 0 2 / 1 / 2 6 .
16 Coded by T a k u j i Nish imura and Makoto Matsumoto .
17

18 B ef o r e us ing , i n i t i a l i z e t h e s t a t e by u s i n g i n i t g e n r a n d (seed)
19 or i n i t b y a r r a y (i n i t k e y , k e y l e n g t h) .
20

21 C o p y r i g h t (C) 1997 − 2002 , Makoto Matsumoto and T a k u j i Nishimura ,
22 A l l r i g h t s r e s e r v e d .
23

24 R e d i s t r i b u t i o n and use i n s o u r c e and b i n a r y forms , w i th o r w i t h o u t
25 m o d i f i c a t i o n , a r e p e r m i t t e d p r o v i d e d t h a t t h e f o l l o w i n g c o n d i t i o n s
26 a r e met :
27

28 1 . R e d i s t r i b u t i o n s o f s o u r c e code must r e t a i n t h e above c o p y r i g h t
29 n o t i c e , t h i s l i s t o f c o n d i t i o n s and t h e f o l l o w i n g d i s c l a i m e r .
30

31 2 . R e d i s t r i b u t i o n s i n b i n a r y form must r e p r o d u c e t h e above c o p y r i g h t
32 n o t i c e , t h i s l i s t o f c o n d i t i o n s and t h e f o l l o w i n g d i s c l a i m e r i n t h e
33 d o c u m e n t a t i o n and / o r o t h e r m a t e r i a l s p r o v i d e d wi th t h e d i s t r i b u t i o n .
34

14

35 3 . The names o f i t s c o n t r i b u t o r s may n o t be used t o e n d o r s e o r promote
36 p r o d u c t s d e r i v e d from t h i s s o f t w a r e w i t h o u t s p e c i f i c p r i o r w r i t t e n
37 p e r m i s s i o n .
38

39 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
40 ”AS IS ” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING , BUT NOT
41 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
42 A PARTICULAR PURPOSE ARE DISCLAIMED . IN NO EVENT SHALL THE COPYRIGHT OWNER OR
43 CONTRIBUTORS BE LIABLE FOR ANY DIRECT , INDIRECT , INCIDENTAL , SPECIAL ,
44 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING , BUT NOT LIMITED TO,
45 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS OF USE , DATA, OR
46 PROFITS ; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
47 LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT (INCLUDING
48 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
49 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
50

51

52 Any f e e d b a c k i s ve ry welcome .
53 h t t p : / / www. math . k e i o . ac . j p / matumoto / emt . h tml
54 e m a i l : matumoto@math . k e i o . ac . j p
55 ∗ /
56

57 /∗ P e r i o d p a r a m e t e r s ∗ /
58 # d e f i n e N 624
59 # d e f i n e M 397
60 # d e f i n e MATRIX A 0 x9908b0dfUL /∗ c o n s t a n t v e c t o r a ∗ /
61 # d e f i n e UPPER MASK 0x80000000UL /∗ most s i g n i f i c a n t w−r b i t s ∗ /
62 # d e f i n e LOWER MASK 0 x 7 f f f f f f f U L /∗ l e a s t s i g n i f i c a n t r b i t s ∗ /
63

64 s t a t i c u n s i g n e d long mt [N] ; /∗ t h e a r r a y f o r t h e s t a t e v e c t o r ∗ /
65 s t a t i c i n t mt i =N+1; /∗ mti ==N+1 means mt [N] i s n o t i n i t i a l i z e d ∗ /
66

67 /∗ i n i t i a l i z e s mt [N] wi th a seed ∗ /
68 vo id i n i t g e n r a n d (u n s i g n e d long s)
69 {
70 mt [0] = s & 0 x f f f f f f f f U L ;
71 f o r (mt i =1 ; mti<N; mt i ++) {
72 mt [mt i] =
73 (1812433253UL ∗ (mt [mti−1] ˆ (mt [mti−1] >> 30)) + mt i) ;
74 /∗ See Knuth TAOCP Vol2 . 3 rd Ed . P . 1 0 6 f o r m u l t i p l i e r . ∗ /
75 /∗ In t h e p r e v i o u s v e r s i o n s , MSBs of t h e seed a f f e c t ∗ /
76 /∗ on ly MSBs of t h e a r r a y mt [] . ∗ /
77 /∗ 2 0 0 2 / 0 1 / 0 9 m o d i f i e d by Makoto Matsumoto ∗ /
78 mt [mt i] &= 0 x f f f f f f f f U L ;
79 /∗ f o r >32 b i t machines ∗ /
80 }
81 }
82

83 /∗ i n i t i a l i z e by an a r r a y wi th a r r a y−l e n g t h ∗ /
84 /∗ i n i t k e y i s t h e a r r a y f o r i n i t i a l i z i n g keys ∗ /
85 /∗ k e y l e n g t h i s i t s l e n g t h ∗ /
86 vo id i n i t b y a r r a y (u n s i g n e d long i n i t k e y [] , u n s i g n e d long k e y l e n g t h)
87 {
88 i n t i , j , k ;
89 i n i t g e n r a n d (19650218UL) ;
90 i =1 ; j =0 ;
91 k = (N>k e y l e n g t h ? N : k e y l e n g t h) ;
92 f o r (; k ; k−−) {
93 mt [i] = (mt [i] ˆ ((mt [i −1] ˆ (mt [i −1] >> 30)) ∗ 1664525UL))
94 + i n i t k e y [j] + j ; /∗ non l i n e a r ∗ /
95 mt [i] &= 0 x f f f f f f f f U L ; /∗ f o r WORDSIZE > 32 machines ∗ /
96 i ++; j ++;
97 i f (i>=N) { mt [0] = mt [N−1]; i =1 ; }
98 i f (j>=k e y l e n g t h) j =0 ;
99 }

100 f o r (k=N−1; k ; k−−) {
101 mt [i] = (mt [i] ˆ ((mt [i −1] ˆ (mt [i −1] >> 30)) ∗ 1566083941UL))
102 − i ; /∗ non l i n e a r ∗ /
103 mt [i] &= 0 x f f f f f f f f U L ; /∗ f o r WORDSIZE > 32 machines ∗ /
104 i ++;
105 i f (i>=N) { mt [0] = mt [N−1]; i =1 ; }
106 }
107

108 mt [0] = 0x80000000UL ; /∗ MSB i s 1 ; a s s u r i n g non−z e r o i n i t i a l a r r a y ∗ /
109 }
110

111 /∗ g e n e r a t e s a random number on [0 , 0 x f f f f f f f f]− i n t e r v a l ∗ /

15

112 u n s i g n e d long g e n r a n d i n t 3 2 (vo id)
113 {
114 u n s i g n e d long y ;
115 s t a t i c u n s i g n e d long mag01 [2]={0 x0UL , MATRIX A} ;
116 /∗ mag01 [x] = x ∗ MATRIX A f o r x =0 ,1 ∗ /
117

118 i f (mt i >= N) { /∗ g e n e r a t e N words a t one t ime ∗ /
119 i n t kk ;
120

121 i f (mt i == N+1) /∗ i f i n i t g e n r a n d () has n o t been c a l l e d , ∗ /
122 i n i t g e n r a n d (5489UL) ; /∗ a d e f a u l t i n i t i a l s eed i s used ∗ /
123

124 f o r (kk =0; kk<N−M; kk ++) {
125 y = (mt [kk]&UPPER MASK) | (mt [kk+1]&LOWER MASK) ;
126 mt [kk] = mt [kk+M] ˆ (y >> 1) ˆ mag01 [y & 0x1UL] ;
127 }
128 f o r (; kk<N−1;kk ++) {
129 y = (mt [kk]&UPPER MASK) | (mt [kk+1]&LOWER MASK) ;
130 mt [kk] = mt [kk +(M−N)] ˆ (y >> 1) ˆ mag01 [y & 0x1UL] ;
131 }
132 y = (mt [N−1]&UPPER MASK) | (mt [0]&LOWER MASK) ;
133 mt [N−1] = mt [M−1] ˆ (y >> 1) ˆ mag01 [y & 0x1UL] ;
134

135 mti = 0 ;
136 }
137

138 y = mt [mt i + +] ;
139

140 /∗ Tempering ∗ /
141 y ˆ= (y >> 11) ;
142 y ˆ= (y << 7) & 0x9d2c5680UL ;
143 y ˆ= (y << 15) & 0 xefc60000UL ;
144 y ˆ= (y >> 18) ;
145

146 r e t u r n y ;
147 }
148

149 /∗ g e n e r a t e s a random number on [0 , 0 x 7 f f f f f f f]− i n t e r v a l ∗ /
150 l ong g e n r a n d i n t 3 1 (vo id)
151 {
152 r e t u r n (l ong) (g e n r a n d i n t 3 2 ()>>1) ;
153 }
154

155 /∗ g e n e r a t e s a random number on [0 ,1]− r e a l−i n t e r v a l ∗ /
156 do ub l e g e n r a n d r e a l 1 (vo id)
157 {
158 r e t u r n g e n r a n d i n t 3 2 () ∗ (1 . 0 / 4 2 9 4 9 6 7 2 9 5 . 0) ;
159 /∗ d i v i d e d by 2ˆ32−1 ∗ /
160 }
161

162 /∗ g e n e r a t e s a random number on [0 , 1)−r e a l−i n t e r v a l ∗ /
163 do ub l e g e n r a n d r e a l 2 (vo id)
164 {
165 r e t u r n g e n r a n d i n t 3 2 () ∗ (1 . 0 / 4 2 9 4 9 6 7 2 9 6 . 0) ;
166 /∗ d i v i d e d by 2ˆ32 ∗ /
167 }
168

169 /∗ g e n e r a t e s a random number on (0 , 1)−r e a l−i n t e r v a l ∗ /
170 do ub l e g e n r a n d r e a l 3 (vo id)
171 {
172 r e t u r n (((d ou b l e) g e n r a n d i n t 3 2 ()) + 0 . 5) ∗ (1 . 0 / 4 2 9 4 9 6 7 2 9 6 . 0) ;
173 /∗ d i v i d e d by 2ˆ32 ∗ /
174 }
175

176 /∗ g e n e r a t e s a random number on [0 , 1) w i th 53− b i t r e s o l u t i o n ∗ /
177 do ub l e g e n r a n d r e s 5 3 (vo id)
178 {
179 u n s i g n e d long a= g e n r a n d i n t 3 2 ()>>5, b= g e n r a n d i n t 3 2 ()>>6;
180 r e t u r n (a ∗67108864.0+ b) ∗ (1 . 0 / 9 0 0 7 1 9 9 2 5 4 7 4 0 9 9 2 . 0) ;
181 }
182 /∗ These r e a l v e r s i o n s a r e due t o I s a k u Wada , 2 0 0 2 / 0 1 / 0 9 added ∗ /
183

184

185 /∗ ∗∗∗
186 ∗
187 ∗ MATLAB code :
188 ∗ /

16

189

190 /∗ t h e gateway f u n c t i o n ∗ /
191 vo id mexFunct ion (i n t n lhs , mxArray ∗ p l h s [] , i n t n rhs , c o n s t mxArray ∗ p r h s [])
192 {
193 i n t errMsgNum = 0 ;
194

195 /∗ F i r s t t ime t h r o u g h .
196 ∗ /
197 i f (mt i == N+1) i n i t g e n r a n d (5489UL) ;
198

199 i f (n l h s > 1) {
200 mexErrMsgIdAndTxt (” t w i s t e r : TooManyOutputs ” , ”Too many o u t p u t a rgumen t s . ”) ;
201 }
202

203 /∗ No a r g s given , r e t u r n a s c a l a r .
204 ∗ /
205 i f (n r h s == 0) {
206 p l h s [0] = m x C r e a t e D o u b l e S c a l a r (g e n r a n d r e s 5 3 ()) ;
207

208 } e l s e i f ((n r h s > 0) && (mxIsChar (p r h s [0]))) {
209 c h a r t h e S t r i n g [1 0] , ∗p = t h e S t r i n g ;
210 i f (mxGetS t r ing (p r h s [0] , t h e S t r i n g , s i z e o f (t h e S t r i n g))) {
211 mexErrMsgIdAndTxt (” t w i s t e r : BadS t r ingArg ” , ” I n v a l i d s t r i n g a r g . ”) ;
212 }
213 f o r (; ∗ p ; p ++) ∗p = t o l o w e r (∗ p) ; /∗ need s t r n c a s e c m p ∗ /
214 i f (s t rncmp (t h e S t r i n g , ” s t a t e ” , s i z e o f (t h e S t r i n g))) {
215 mexErrMsgIdAndTxt (” t w i s t e r : BadS t r ingArg ” , ” I n v a l i d s t r i n g a r g . ”) ;
216 } e l s e i f (n r h s > 2) {
217 mexErrMsgIdAndTxt (” t w i s t e r : TooManyInputs ” , ”Too many i n p u t a rgumen t s . ”) ;
218 }
219

220 /∗ Re tu rn t h e o l d s t a t e when s e t t i n g t h e s t a t e on ly i f a sked f o r , b u t
221 ∗ a lways r e t u r n c u r r e n t s t a t e when r e a d i n g t h e s t a t e .
222 ∗ /
223 i f ((n l h s > 0) | | (n r h s == 1)) {
224 p l h s [0] = mxCrea teNumer icMat r ix (1 ,N+1 ,mxUINT32 CLASS , mxREAL) ;
225 u n s i g n e d long ∗q = mt , ∗p = (u n s i g n e d long ∗) mxGetData (p l h s [0]) ;
226 f o r (i n t i =N; i ; i−−) ∗p++ = ∗q ++;
227 ∗p++ = mt i ;
228 }
229

230 /∗ I n i t o r s e t t h e s t a t e .
231 ∗ /
232 i f (n r h s == 2) {
233 u n s i g n e d long i n i t L e n = (u n s i g n e d long) mxGetNumberOfElements (p r h s [1]) ;
234 i f (i n i t L e n == 1) {
235 /∗ M&N’ s d e f a u l t i n i t i a l i z e r (s e e g e n r a n d i n t 3 2) i s
236 ∗ 5489UL, make z e r o do t h e same t h i n g as t h a t .
237 ∗ /
238 u n s i g n e d long i n i t V a l = (u n s i g n e d long) mxGetSca la r (p r h s [1]) ;
239 i f (i n i t V a l == 0) i n i t V a l = 5489UL;
240 i n i t g e n r a n d (i n i t V a l) ;
241 } e l s e i f (mxIsDouble (p r h s [1])) {
242 i f (i n i t L e n <= N) {
243 do ub l e ∗q = (d ou b l e ∗) mxGetData (p r h s [1]) ;
244 u n s i g n e d long i n i t [N] , ∗p = i n i t ;
245 f o r (i n t i = i n i t L e n ; i ; i−−) ∗p++ = (u n s i g n e d long) ∗q ++;
246 i n i t b y a r r a y (i n i t , i n i t L e n) ;
247 } e l s e {
248 mexErrMsgIdAndTxt (” t w i s t e r : I n v a l i d I n i t L e n ” , ” I n i t i a l i z e r J must have fewer t h a n

625 e l e m e n t s . ”) ;
249 }
250 } e l s e i f (mxIsUin t32 (p r h s [1])) {
251 u n s i g n e d long s t a t e L e n = (u n s i g n e d long) mxGetNumberOfElements (p r h s [1]) ;
252 u n s i g n e d long ∗ s t a t e = (u n s i g n e d long ∗) mxGetData (p r h s [1]) ;
253 i f ((s t a t e L e n == N+1) && (s t a t e [N] <= N)) {
254 u n s i g n e d long ∗q = s t a t e , ∗p = mt ;
255 f o r (i n t i =N; i ; i−−) ∗p++ = ∗q ++;
256 mti = (i n t) ∗q ++;
257 } e l s e {
258 mexErrMsgIdAndTxt (” t w i s t e r : I n v a l i d S t a t e L e n ” , ” I n v a l i d s t a t e v e c t o r S . ”) ;
259 }
260 } e l s e {
261 mexErrMsgIdAndTxt (” t w i s t e r : I n v a l i d I n i t O r S t a t e ” , ” Second i n p u t must be an i n i t i a l i z e r

o r a s t a t e v e c t o r . ”) ;
262 }
263 }

17

264

265 } e l s e {
266 i n t nelem , l o c a l D i m s [1 0] ;
267 i n t ∗dims = l o c a l D i m s ;
268 i n t ndim = (n r h s == 1) ? mxGetNumberOfElements (p r h s [0]) : n r h s ;
269

270 i f (ndim > 10) {
271 dims = (i n t ∗) mxCalloc (ndim , s i z e o f (i n t)) ;
272 }
273

274 /∗ I n d i v i d u a l s i z e a r g s g i v e n .
275 ∗ /
276 i f (n r h s > 1) {
277 i n t ∗p = dims ;
278 nelem = 1 ;
279 f o r (i n t i =0 ; i<ndim ; i ++) {
280 i f ((! mxIsDouble (p r h s [i])) | | (mxGetNumberOfElements (p r h s [i]) ! = 1) | | mxIsComplex (p r h s [

i])) {
281 errMsgNum = 101 ; go to c l e a n u p ;
282 }
283 nelem ∗= ∗p++ = (i n t) mxGetSca la r (p r h s [i]) ;
284 }
285

286 /∗ S i z e v e c t o r g i v e n .
287 ∗ /
288 } e l s e { /∗ n r h s == 1 , n r h s ==0 has a l r e a d y been weeded o u t ∗ /
289 i f ((! mxIsDouble (p r h s [0])) | | (mxGetNumberOfElements (p r h s [0])<1) | | mxIsComplex (p r h s [0]))

{
290 errMsgNum = 102 ; go to c l e a n u p ;
291

292 /∗ S i n g l e s i z e g iven , we ’ l l r e t u r n a s q u a r e m a t r i x .
293 ∗ /
294 } e l s e i f (ndim == 1) {
295 ndim = 2 ;
296 i n t n = (i n t) mxGetSca la r (p r h s [0]) ;
297 dims [0] = n ; dims [1] = n ;
298 nelem = n∗n ;
299

300 /∗ S i z e v e c t o r .
301 ∗ /
302 } e l s e {
303 i n t ∗p = dims ;
304 do ub l e ∗q = (dou b l e ∗) mxGetData (p r h s [0]) ;
305 nelem = 1 ;
306 f o r (i n t i =ndim ; i ; i−−) nelem ∗= ∗p++ = (i n t) ∗q ++;
307 }
308 }
309

310 f o r (i n t i =0 ; i<ndim ; i ++) {
311 i f ((dims [i] < 0) | | dims [i] > INT MAX) {
312 errMsgNum = 103 ; go to c l e a n u p ;
313 }
314 }
315

316 /∗ C r e a t e t h e o u t p u t ma t r ix , g e t a p o i n t e r t o i t s da t a , and f i l l i t
317 ∗ i n wi th random v a l u e s .
318 ∗ /
319 {
320 p l h s [0] = mxCreateNumer icArray (ndim , dims , mxDOUBLE CLASS, mxREAL) ;
321 do ub l e ∗ r = (do ub l e ∗) mxGetData (p l h s [0]) ;
322 f o r (i n t i =nelem ; i ; i−−, r ++) ∗ r = g e n r a n d r e s 5 3 () ;
323 }
324

325 c l e a n u p :
326 i f (dims != l o c a l D i m s) mxFree ((vo id ∗) dims) ;
327 i f (errMsgNum) {
328 mexErrMsgIdAndTxt (” t w i s t e r : I n v a l i d S i z e ” , ” I n v a l i d o u t p u t s i z e . ”) ;
329 }
330 }
331 }

	Introduction
	Uniform Random Variables
	Classic Generators
	Mersenne Twister Generator

	Binomial Random Variables
	General Transformation Method
	Generation
	Generate from Bernoulli Random Variables
	Approximate the CDF with normal PDF
	Directly use built-in functions for calculating binomial PMF

	Verification
	Numerical Characteristics
	Normalized Histogram
	Common Verification Fallacies

	Non-parametric Hypothesis Test

	Two Independent Normal Random Variables
	Generation
	Verification
	Numberical Characteristics

	Normalized Histogram
	Verification
	Test of Normality
	Test of Independence

	Conclusion
	References

