Computer Generation of Random Variables Based
on Transformation Method

Zexi Huang
Yingcai Honors College
University of Electornic Science and Technology of China

I. INTRODUCTION

Generating any random variables given their probability density function (PDF) or probability mass function (PMF) is
essential in computer-based signal analysis and processing. Here, we use the transformation method to generate the required
random variables and verify their relative properties. The remainder of this report is organized as follows: In the following
section, we briefly introduce the method of uniformly distributed psudo-random numbers. Section III presents method for
generating binomial random variables using transformation method, verify their validity and compare the efficiency between
several modified versions of algorithm. In Section IV, we use a special form of transformation method to generate two
independent normal random variables and test their normality and independence. Finally, we give a short discussion and
conclude in Section V.

Prior to detailed introduction, it is worth mentioning that the working environment is MATLAB 9.0.0.341360 (R2016a), and
all source codes (except for MT19937, which is coded in C++) included in the appendix are of that syntax.

II. UNIFORM RANDOM VARIABLES

The implementation of transformation method is based on uniform random variables between [0, 1] and the given cumulated
distribution function (CDF). Thus the first step of generating any type of random variables is to find a uniform random variable
generator.

A. Classic Generators

The most classic type of psudo-random number generator is the linear congruential generator (LCG), which is defined by
the recurrent relation
Xpt1 = (aX,+¢) modm (D

where X is the sequence of pseudorandom values, and m > 0, the modulus, 0 < a < m, the multiplier, 0 < ¢ < m, the
increment, 0 < Xy < m, the seed, are integer constants that specify the generator. If ¢ = 0, the generator is often called a
multiplicative congruential generator (MCG), or Lehmer RNG. If c0, the method is called a mixed congruential generator.

The LCG is very easy to implement and require minimal memory (typically 32 or 64 bits) to retain state. However, its
period length is very limited (at best m, which is often m = 232 and m = 254), and it is predictable from a subsequence
because of the serial correlation and thus not suitable for Monte Carlo simulation and cryptography applications.

B. Mersenne Twister Generator

The Mersenne Twister (MT) algorithm is based on a matrix linear recurrence over a finite binary field F'2. The algorithm
is a twisted generalised feedback shift register (twisted GFSR, or TGFSR) of rational normal form (TGFSR(R)), with state bit
reflection and tempering. The basic idea is to define a series x; through a simple recurrence relation, and then output numbers
of the form x;7T', where 7' is an invertible F'2 matrix called a tempering matrix [1].

Compared to LCG, MT has a very long period length (2!19937), which is enough for nearly any use of random numbers.
Plus, it is easy to be modified to become cryptographically capable, with efficiency similar to LCG. Thus, it is now most
popular RNG algorithm. In this article, we will use MT719937, a modified version of MT as our method to generate uniform
random variables. Since it is not our focus to generate random numbers, the detailed MT algorithm is omitted and the C++
code, twister.cpp to implement the algorithm is provided by the authors of the algorithm [1], as included in Appendix.

It’s noteworthy that a integer seed must be provided for twister every time when the MATLAB starts. It’s suggested to a
random seed like the current time. Thus we run twist(’state’, 100*sum(clock)) to initialize the generator.

A sample of 50 random uniform variables in [0, 1] by calling twister(1,50) is listed in Table 1.

Correspondence should be addressed to Z. Huang. E-mail: Eitima@ 163.com

TABLE I
A SAMPLE OF 50 UNIFORM RANDOM VARIABLES

0.557623 0.096574 0.728721 0.946501 0.548659 0.410843 0.017287 0.627216 0.230289 0.896297
0.224381 0.528917 0.042601 0.202466 0.696846 0.382712 0.464360 0.399971 0.817837 0.768933
0.887287 0.305046 0.486443 0.392051 0.423167 0.634413 0.174765 0.631697 0.150344 0.422200
0.806684 0.324624 0.197380 0.765630 0.732800 0.935835 0.302143 0.493050 0.181880 0.654789
0.823832 0.141927 0.486791 0.435605 0.864884 0.457860 0.747067 0.605341 0.627621 0.112581

III. BINOMIAL RANDOM VARIABLES
A. General Transformation Method

The algorithm of general transformation method to generate any required type of random variables given their PDF or PMF
is as follows:

1) Generate a uniformly distributed random number « in the interval [0, 1].
2) For random variable X with CDF F(z), find = such that F(z) = u or x = F~!(u).Then x is the required random
variable specified by F'(z).

Note that since the close form of F~!(u) is in most cases, not readily available, we adopt a numeric method, that is, finding
€T

the minimum « such that F'(z) > u. Also, we dont necessarily need the close form for F(z) as we note F'(x) = Z fly)

Y=z
for discrete random variables and F(z) = [f(y)dy.
B. Generation
The PMF of a binomial random X with parameter n and p is
flx)=Cip*(1—p)"*,0<z<n,z€N” ()

Note that the close form of the PMF is not readily available, we apply
L]
> fy)0<z<n
F(x)=(v=0 3)
1,z >n

0, <0

for evaluation.

BinomialGenerator.m illustrates the approach of generating any given number N of Binomial random variables with
probability of success p and number of trials n according to the transformation method. A sample of N = 50X’s with
n = 100, p = 0.6 is in Table II. During the generation process of large N (for example N = 1000), the cost of calculating C}

TABLE 11
A SAMPLE OF 50 BINOMIAL RANDOM VARIABLES

58 55 54 56 66 54 60 64 54 54 62 59 49 67 64 51 59 65 68 55 58 68 64 58 60
57 66 57 56 53 61 65 54 65 52 60 53 62 62 62 59 60 61 62 51 58 54 63 54 62

is overwhelmingly expensive. In our environment, it can take nearly half an hour (1703.360s) to finish the calculation and thus
obviously unacceptable. In addition, calculating C'¥ for large n leads to loss of accuracy since this coefficient can be much
larger than 9 x 10! and in MATLAB it is reduced to only the first 15 digits.

Hence, we consider three alternatives to solve the problem.

1) Generate from Bernoulli Random Variables: Since binomial random variable is defined as the number of successes of a
series of Bernoulli trials, we could sum Bernoulli random variables up to obtain binomial random variables, that is,

X-Yy,)
i=1

where X denotes a binomial random variables with parameters n and p, and Y; denotes a mutually independent Bernoulli
random variables with probability of success p, whose PMF and CDF are

e oy=1
fly) = L~ py=0 ®)

and

0, y <0
Fly)=¢1-p,0<y<1 (6)
L, y=>1

Thus, we could first use transformation method to generate Bernoulli random variables with the same p as required for
binomial random variables and then count the number of success among n independent Bernoulli random variables, which
leads to the required binomial random variable. BernoulliGenerator.m illustrates the approach of generating any given number
n of Bernoulli random variables with probability of success p according to the transformation method and based on that,
CountSuccessBinomialGeneratorm shows the process of generating binomial random variables in this way.

In our environment, the process of generating a N = 1000 sample lasts only for seconds (1.744s), thus is is indeed an
acceptable method.

A further examination of the built-in generator binornd.m indicates that it adopts the same method, that is, generating values
as a sum of Bernoulli random variables. The efficiency and other issues of this method is discussed in detail in [2].

2) Approximate the CDF with normal PDF: Note that np = 60 > 5 and n(1 — p) = 40 > 5 in our case, the normal
approximation to the binomial distribution is guaranteed to be of good precision. Thus, with continuity correction applied, we
have 0.5

F(r) = P(X <o) = P(z < " ——"T))
np(l —p)
This and the next methods are implemented in BinomialGeneratorDiscussion.m with mode = 1,2 respectively. This method
usually requires half a minute (28.631s) to finish.

3) Directly use built-in functions for calculating binomial PMF: The built-in solution for PMF of binomial distribution

f(x) is binopdf-m which is based on a saddle point expansion [3]:

log(f (ain, p)) = log(f(z:n.) = D(win,p) ®)

where the deviance D(x;n,p) is defined as

n—=I

Dain,p) = log(f(ain,) = log(f (xn.p)) = wlog(~—) + (n — x) log) ©)

x
np n(l—p)
A generation method using the built-in binomial PMF requires several minutes (294.399s) to finish.

C. Verification

For the rest part of this problem, for efficiency and accuracy, all random variables are generated through the approach in
Subsubsection III-B1 instead of the general transformation method in Subsection III-B.

1) Numerical Characteristics: Execute CountingSuccessBinomialGeneratorm with N = 1000, n = 100 and p = 0.6, we
generate a sample of 1000 binomial random variables X with theoretic mean

w=mnp=060 (10)

and variance
o? =np(l —p) = 24. (11)

Passing X to MeanVariance.m, we have

NE

€T 7)?

> (zi —7)
711 = 60.0460, s> = 171 = 24.7787 (12)

[INgE
I

%

T =
which are consistent with Equation 10 and Equation 11.

2) Normalized Histogram: The normalized histogram of the sample is a good approximation to the PMF of the population
as long as the size of the sample is fairly big enough.The drawing process is accomplished by DrawingHistograml.m. The
second parameter width is to determine the width for each bin. The different choice of width may have critical influence on
the shape of the histogram. Apart from the normalized histogram, this program also draws the theoretic PMF of PDF of that
distribution for comparison.

Running DrawingHistogram.m with generated X, width = 1, we have the output figure as Figure 1.

0.09 Normalized Histogram of 1000 Binomial Random Samples

I Normalized histogram
0.08 - Theoretic PMF 7

o o o
o o o
a > ~

Relative Frequency
o
o
~

0.03

0.02

0.01

Fig. 1. Normalized Histogram for 1000 Binomial Random Samples.

3) Common Verification Fallacies: In Figure 1, it is clear that the sample approximately follows a binomial distribution.
However, we still need statistical methods to verify it. Students turn to use covariance or correlation coefficient between samples
generated from standard generator and their generator to evaluate whether they succeed or not, which is a complete mistake
theoritically and practically.

The first common fallacy is to directly compute correlation coefficient between two generated samples.

Theoritically speaking, a generator always generates independent random samples from a given distribution. After all, it
can’t be called a random variable generator if the present sample is related to previous ones. Thus, even two samples X7, X»
of N random variables generated from the standard generator are independent and thus uncorrelated, that is

lim cov(X1,X2)=0 (13)
N—00

In practice, ExplainningCommonFallacy.m computes correlation coefficents between various generated samples to indicate
these commmon fallacies. Run that with mode = 1, we compute the correlation coefficient between two sample sets. Both are
generated from standard binomial random variable generator binornd.m, with N = 1000, n = 100 and p = 0.6. The return

value is
_cov(X1, Xa)

5152

= —0.0066 ~ 0 (14)

As is obvous in Equation 14, there is no correlation between samples generated from the same standard generator.

The second common fallacy is to compute correlation coefficient between two sorted generated samples (say, in an incresing
order).

This method seems swifter than the first one but still lacks both theoretical background and practical meanings. In fact,
when sorted, the samples become first order statistics. And respective PMF becomes [4]

n!
S L — 2 =l F n—k 1
fr(@r) = 1)!(n—k‘)![(zr)]" 7] (@i)]" " f (k) (15)
where xj, is the kth order statistic. Therefore, the theoretic covariance is computed by
N
> (z1k — 71) (w2r — 22)
cov(X1, Xs) = B(5=0) (16)

Sz185z2
where x1; and xo; are kth order sample from X; and X5 and follow distribution from Equation 15. Theoritic value of
Equation 16 is hard to evaluate but what we need to know is that it has nothing to do with the validity of the generator.

Run ExplainningCommonFallacy.m with mode = 2, we compute the the correlation coefficient between two binomial sample
sets with Ny = Ny = 1000, n1 = no = 100, p; = 0.1, ps = 0.9 respectively. The return value is
X1, X
p= cov(X1, X2) _) 9800 (17)

5152

We see that even if the two distribution is different to a very large extent, the correlation coefficient is still large.

D. Non-parametric Hypothesis Test

A systematic approach to test whether the samples fit a given distribution is Pearson’s x? test. It tests a null hypothesis
Hy stating that the frequency distribution of certain events observed in a sample is consistent with a particular theoretical
distribution. The test statistic is N) N

XQZZ(OZ ;‘Ez) :NZ(OZ/N_pz) (18)
i=1 i i=1 DPi
where O; is the number of observations in category i, F; = Np; is the expected frequency of type i, asserted by the null
hypothesis that the fraction of type ¢ in the population is p; and N is the total number of observations (sample size). Then the
test statistic follows a x? distribution with degree of freedom n — 1 — p, where p is the number of the unknown parameters
of the distribution if Hy is ture, which would be replaced by their maximum likelihood estimates in the calculation process.

NonParametricHypothesisTest.m implements all the non-parameter tests for this and following problem. Here, we test whether
our generated sample X fits the theoretical distribution. Run NonParametricHypothesisTest.m with X and mode = 1, we have
our hypothesis result and respective p value.

Accept Hy,p = 0.8858 (19)

Thus, we can’t rejct Hy, which indicates the frequency distribution from our samples is consistent with the theoritical one.

IV. TWO INDEPENDENT NORMAL RANDOM VARIABLES
A. Generation

Here, we apply a special form of transformation method to generate two independent normal random variables. As long as
X adn X, are two independent uniform random variables,

Y1 =0y —2In X; cos(2nXs) +m (20)
Yy =0y —2In X, sin(27X5) +m 21

are two independent normal random variables with E(Y;) = E(Y2) = m, V(Y1) = V(Y2) = o2
NormalGenerator.m illustrates the approach of generating N samples of two independent normal random variable with
parameter m and o. Table III and Table IV records two sets of 50 normal random samples Y7 and Y5 with m =1 and 0 = 2.

TABLE III
A SAMPLE OF 50 NORMAL RANDOM VARIABLES, FIRST SET

1.84735 -1.04541 1.28496 1.00590 -0.75245 1.32464 0.93434 -1.03333 0.15877 -0.14319
2.81723 -0.09764 228270 2.06963 -2.96432 -1.08785 0.30621 3.78081 3.77749 3.15242
0.59305 0.53039 1.96144 2.89554 1.48787 292631 -2.66943 1.17166 1.82833 0.27576
2.73823 3.92442 -0.11542 239502 -1.64079 2.18286 1.17879 0.87407 -0.52520 1.68041
-0.75731 1.14655 -2.55063 -2.64490 -1.03768 1.43336 -1.29162 2.69257 295180 -0.43551

TABLE IV
A SAMPLE OF 50 NORMAL RANDOM VARIABLES, SECOND SET

-0.45481 -0.80005 1.90802 1.55385 1.28825 2.48323 0.94621 2.11215 1.70294 3.24939
-1.67786 1.68190 2.15890 0.21632 1.29920 -0.26320 -0.17812 -2.26349 1.42435 1.21952
-0.44189 -1.72672 0.02997 0.28586 1.95675 -0.87463 -0.40302 0.78905 -0.15996 -3.33380
-0.53905 3.89746 -0.87898 0.99720 -1.90732 -1.33349 -1.74078 -0.17804 -0.87675 0.41310
2.86881 0.90354 3.31284 3.19603 0.33660 -0.63267 3.04379 1.29074 1.78196 2.45101

B. Verification

1) Numberical Characteristics: Execute NormalGeneratorm with N = 1000, m = 1 and o = 2, we generate two sets of
1000 binomial random samples Y7 and Y> with theoretic mean and variance E(Y;) = E(Y2) =1 and V(Y1) =V (Y2) = 4.
Passing Y7 and Y> to MeanVariance.m, we have

1 = 1.1198, 9 = 0.9554 (22)
52 = 4.0348, 55 = 3.7386 (23)

which are consistent with the theoretical values.
In addition, we compute their correlation coefficient by calling corrcoef(Y1,Y2) and get

p = 0.0046 (24)

which shows that Y] and Y5 is approximately uncorrelated.

C. Normalized Histogram
Run HistogramDrawing2.m with Y7, Y5 and width = 0.5, we have the histograms as well as the theoretic PDF in Figure 2.

Normalized Histogram of 1000 Normal First Set 02 Normalized Hi: of 1000 Normal
T T T T T . T T T

T T
I Normalized histogram
—— Theoretic PDF |

Second Set

T T
I Normalized histogram
—— Theoretic PDF |

0.2

0.14 |

Relative Frequency Density
o
Relative Frequency
o

Fig. 2. Normalized Histogram for Two Sets of 1000 Random Samples.

D. Verification

1) Test of Normality: Again, we use Pearson’s x? test to check whether these two sample sets follows the theoretical normal
distribution. Run NonParametricHypothesisTest.m with previous Y7 and Y5 with mode = 2, we have

Accept Hy,p = 0.8107 for Y3 (25)
Accept Hy, p = 0.8009 for Yo (26)

Thus, we can’t reject Hy and conclude that Y7 and Y5 follow the theoretical distribution.

2) Test of Independence: The systematic approach to test independence between two samples is another important application
of Pearson’s x? test. In that case, the two samples are considered together as a sample of 2-turples, where the first dimension is
consisted of r categories and the second s. Then it tests a null hypothesis H stating that the frequency of observations falling
into th category of the first dimension and jth category of the second is exactly the same as the frequency of ith category of
the first multiplies that of jth category of the second, that is

Hy : P(Y; € Category;, Yo € Category;) = P(Y1 € Category;)P(Ys € Category,) (27)

Then, the constructed test statistic is

T S
9 NisNaj o NixNsj
=D iy = = (28)
i=1 j=1
where n;; is the number of obeservations falling into both ith category of the first dimension and jth category of the second,

Njx, Nj 18 the number of obeservations falling into ith category of the first dimension and jth category of the second dimension

respectively and n is the total number of observations. Then the test statistic follows a x? distribution with degree of freedom

(r—1)(s—1).

In our test, we first divide the two sets of normal random samples into 6 categories each accroding to their values, that is
(—oco,m — 20),[m — 20,m — o), [m — o,m),[m,m+ o), [m+ o,m-+ 20),[m + 20, +0)

Run IndependenceTest.m with generated Y; and Y>, we have the generated contigency table as Table V and the test result is

Accept Hy,p = 0.5588 (29)
TABLE V
CONTIGENCY TABLE FOR TEST OF INDEPENDENCE BETWEEN Y] AND Y>
Y1
v (mo0o,m—=20] | [m—20,m—0) | [m—0o,m) | m,m+o) | [m+o,m+20) | [m+20,+00) | Total
2

(—o0, m — 20] 1 3 5 4 1 0 14
[m — 20,m — o) 0 21 61 46 29 5 162
[m —o,m) 5 45 110 118 43 8 329
[m,m + o) 12 41 120 111 40 9 333
[m + o, m + 20) 3 21 48 47 20 0 139

[m 4+ 20, +00) 1 1 10 8 3 0 23
Total 22 132 354 334 136 22 1000

Thus, we can’t reject Hy and conclude that Y; and Y, are mutually independent.

V. CONCLUSION

In this article, we introduce methods for generating psudo-random numbers, generate typical random variables using
transformation method based on them, and apply statistical hypothesis tests two verify that they have satisfied the requirements.
In addition, we extend our discussion to the efficiency and accuracy of different generation methods, analyze the algorithms
of MATLAB built-in random variable generators and also explainning some common fallacies when verifying the generated
samples follow a certain distribution. The whole project is insightful and can serve as the first step for newcomers in the field
of probability and signal analysis.

ACKNOWLEDGEMENT

The author would like to express his gratitude to Dr. S.C. Wu in National Tsing Hua University, who briefly introduced the
transformation method and supervised part of this project, and Dr Y. Song in University of Electronic Science and Technology
of China, under whose supervision and guidance the most part of this project was conducted.

REFERENCES

[1] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator,” ACM Transactions
on Modeling and Computer Simulation (TOMACS), vol. 8, no. 1, pp. 3-30, 1998.

[2] L. Devroye, “Sample-based non-uniform random variate generation,” in Proceedings of the 18th conference on Winter simulation. ~ACM, 1986, pp.
260-265.

[3] C. Loader, “Fast and accurate computation of binomial probabilities,” 2000.

[4] H. A. David and H. N. Nagaraja, Order statistics. Wiley Online Library, 1981.

APPENDIX
The source codes are listed here for reference.
1) BernoulliGenerator.m
1 %{
2> %Generating n Bernoulli random variables with probability of success p.

3 %Zexi Huang
%0Oct. 4 2016
5 %)

function Y=BernoulliGenerator(n,p)
9n: number of output random variables.
Jp: probability of success.

o

10
1 %CDF of Bernoulli RV.
function F=CDF(x)

45

if x<0
F=0;
elseif x>=1
F=1;
else
F=1-p;
end
end

9%Numerical approach of the
function G=InverseCDF (u)
x=[0,1];
for s=x
if CDF(s)>=u
G=s;
break ;
end
end
end

%Generation process

for ii=n:—1:1
%Seemingly more efficient
%once in the loop.
u=twister () ;
Y(ii)=InverseCDF(u);

end

end

BinomialGenerator.m

%{
%Generating N binomial random
%Zexi Huang

%0ct. 4 2016

%}

inverse CDF.

thant from

variables

function X=BinomialGenerator (N,n,p)

9N: number of output random variables.
9%n: number of trials.
J%p: probability of success.

I9PMF of binomial RV.
function f=PMF(x)

f=nchoosek (n,x)*p "x*x(1—p) " (n—x);

end

9%CDF of binomial RV (evaluation).

function F=CDF(x)
if x<0
F=0;
elseif x>n
F=1;
else
F=0;
for ii=1:floor(x)
F=F+PMF(ii);
end
end
end

9%Numerical approach of the
function G=InverseCDF (u)
x=0:n;
for s=x
if CDF(s)>u
G=s;
break ;
end
end
end

2> %Generation process

%Seemingly more efficient
%once in the loop.
for jj=N:—1:1

inverse CDF.

thant from

1 to n. Array

with parameter p and n.

I to n. Array

size only changed

size only changed

u=twister () ;
X(jj)=InverseCDF(u);
end

end

BinomialGeneratorDiscussion.m

%{
%Generating N Binomial random variables with parameter p and n with two
Jalternative approaches.

%Zexi Huang

%0ct. 4 2016

%)

function X=BinomialGeneratorDiscussion (N,n,p,mode)

9N: number of output random variables.

9%n: number of trials.

%p: probability of success.

Jomode=1: Approximate with normal PDF.

%mode=2: Use built—in binopdf.

9PMF of binomial RV.
function f=PMF(x)
switch mode
case{l}
f=normpdf (x,nx*p, sqrt(nxpx(1—p)));
case{2}
f=binopdf(x,n,p);
end
end

9%CDF of binomial RV (evaluation).
function F=CDF(x)
if (x<0)
F=0;
elseif x>n
F=1;
else

=0;
for ii=1:floor(x)
F=F+PMF(ii);
end
end
end

%Numerical approach of the inverse CDF.
function G=InverseCDF (u)
x=0:n;
for s=x
if CDF(s)>u
G=s;
break ;
end
end
end

%Generation process
%Seemingly more efficient thant from 1 to n. Array size only changed
%once in the loop.
for jj=N:—1:1
u=twister () ;
X(jj)=InverseCDF (u);
end

end

CountingSuccessBinomialGenerator.m

%{
%Generating N Binomial random variables with parameter p and n based on
%generated independent Bernoulli random variables with same parameter p.
%Zexi Huang

%0ct. 4 2016

%}

function X=CountingSuccessBinomialGenerator(N,n,p)
9N: number of output random variables.

=

%n : number of Bernoulli random variables to be counted.

%p: probability of success.

%Counting number of success in y.
function count=CountSuccess(y)
count=0;
for x=y
if x==1
count=count+1;
end
end
end

3 %9Generation process

for ii=N:—1:1
y=BernoulliGenerator(n,p);
X(ii)=CountSuccess(y);

end

end

DrawingHistograml.m
%{

%Drawing normalized histogram derived from a sample of binomial

Jand compare it with theoritic PMF.
%Zexi Huang

%0ct. 5 2016

%}

function DrawingHistograml (X, width)
%X: sample of random variables to be drawn.
%width: width of each bin.

3 %Produce histogram.

[nelements , xcenters]J=hist (X,(range (X)+1)/width);
bar (xcenters ,nelements/(widthxlength (X)) ,1);
xlabel (’x7);

7 ylabel (’Relative Frequency’);

hold on;

%Produce respective figure.

plot(40:80,binopdf(40:80,100,0.6),’r’, LineWidth’ ,1.5);

legend (’Normalized histogram’,’ Theoretic PMF’);

title ('Normalized Histogram of 1000 Binomial Random Samples’);

hold off;

end

DrawingHistogram2.m

%{
%Drawing normalized histogram derived from two samples
%and compare them with their theoritic PMF.

%Zexi Huang

%0Oct. 5 2016

%)

function DrawingHistogram2 (Y1,Y2, width)
%Y1,Y2: sample of random variables to be drawn.
%%width: width of each bin.

%Produce figure for YI.
subplot(1,2,1);

[nelements , xcenters J=hist (Y1l,(range(Y1)+1)/width);

bar (xcenters ,nelements /(widthxlength (Yl)) ,1);
xlabel ("y_17);

ylabel (" Relative Frequency Density’);

hold on;

plot(—5:0.01:7 ,normpdf(—5:0.01:7,1,2), r’, LineWidth’ ,1.5);

legend (’Normalized histogram’,’ Theoretic PDF’);

title ('Normalized Histogram of 1000 Normal Random Samples,
2> Jset(gea,’ XTick’,—10:1:10);
3 axis([—8 8 0 0.2]);

distribution

distribution

10

%Produce figure for Y2.
subplot(1,2,2);

[nelements , xcenters]J=hist (Y2,(range (Y2)+1)/width);

bar(xcenters ,nelements/(widthxlength (Y2)) ,1);
xlabel ("y_27);

ylabel (" Relative Frequency’);

hold on;

plot(—5:0.01:7 ,normpdf(—5:0.01:7,1,2),’¢g’, LineWidth’ ,1.5);

legend (’Normalized histogram’,’ Theoretic PDF’)

title (" Normalized Histogram of 1000 Normal Random Samples,

YDoset (gea,’ XTick’,—10:1:10);
axis([—8 8 0 0.2]);

hold off;

> end

ExplainingCommonFallacy.m

%{
%Explain common fallacy in practice.

%Zexi Huang

%0ct. 5 2016

%)}

function coef=ExplainingCommonFallacy (mode)
%mode: determines which set of coefficient to

%Generating samples of RV and compute their correlation coefficient.

switch mode
case {1}
Xl1=binornd (100,0.6,1000,1);
X2=binornd (100,0.6,1000,1);

case {2}
% x=1xones (5000000,1);
% Xl=chi2rnd (x);
% Xl=sort (X1);
% y=zeros (5000000,1);
% X2=normrnd (y,x);
> % X2=sort(X2);

X1=binornd (100,0.1,1000,1);
Xl=sort(X1);
X2=binornd (100,0.9,1000,1);
X2=sort (X2);

end

coef=corrcoef (X1,X2);
coef=coef (1,2);

end

IndependenceTest.m

%

>

return .

%Independent test between two normal random samples.
3 %Zexi Huang

%0ct. 6 2016
%)

function [table ,h,p]=IndependenceTest(Y1,Y2)

%Y1, Y2: two sets random samples to be tested.
J%table: the output contigency table.

Jh: whether the test is rejected, 1 indicates
Y%p: p—value of the test.

%Computing mean, sample standard deviation and lengths

[ml,vl]=MeanVariance (Y1) ;
[m2,v2]=MeanVariance (Y1) ;
sl=sqrt(vl);

s2=sqrt(v2);

nl=numel (Y1) ;

n2=numel (Y2);

%Replacing values with category labels.
for ii=1:nl

rejected .

o

P

)

10)

woE W D =

if (Y1(ii)<ml—2x%s1)
Y1(ii)=1;

elseif (Y1(ii)<ml—sl)
Y1(ii)=2;

elseif (Y1(ii)<ml)
Y1(ii)=3;

elseif (YI(ii)<ml+sl)
Y1(ii)=4;

elseif (Y1(ii)<ml+2xsl)
Y1(ii)=5;

else
Y1(ii)=6;

end

end

for ii=1:n2
if (Y2(ii)<m2—2xs2)
Y2(ii)=1;
elseif (Y2(ii)<m2—s2)
Y2(ii)=2;
elseif (Y2(ii)<m2)
Y2(ii)=3;
elseif (Y2(ii)<m2+s2)
Y2(ii)=4;
elseif (Y2(ii)<m2+2xs2)
Y2(ii)=5;
else
Y2(ii)=6;
end
end

%Produce the contigency table and do the chi2 test.
[table ,chi2 ,p]=crosstab (Y1,Y2);

if (p<0.05)
h=1;
else
h=0;
end

end

MeanVariance.m

%{
%Calculating mean and variance for given random samples.
%Zexi Huang

%0ct. 5 2016

%}

function [mean, variance]=MeanVariance (X)

9%X: an array of random samples.

%mean, variance: sample mean and sample variance.

%Size of sample.
n=numel (X) ;

9%Mean of sample.
mean=sum(X) /n;

%V ariance of sample.
variance =0;
for jj=1:n
variance=variance +(X(jj)—mean) "2;
end
variance=variance /(n—1);

2 end

NonParametricHypothesisTest.m
%{

9%Non—parameter hypothesis test for good of fit and independence.
%Zexi Huang

%0ct. 5 2016

%}

function [h,p]=NonParametricHypothesisTest (X, mode)

12

9%X: sample of random variables to be tested.
%mode: determines which test is used.

Jh: whether the test is rejected , 1
Jp: p—value of the test.

%Generate standard pdf.
switch mode
case{1}

indicates

rejected .

pd=makedist(’Binomial > ,’N’,100, p’,0.6);

[h,pl=chi2gof (X, 'CDF’
case {2}

pd=makedist(’Normal’,

[h,pl=chi2gof (X, 'CDE’ ,pd) ;
end

%Hypothesis test.

NormalGenerator.m

%{
%Generating N normal random variables
%deviation .

%Zexi Huang

%0ct. 5 2016

%)

function [Y1,Y2]=NormalGenerator (N, mean, sd)
9N: number of random variables
%mean: mean of required normal distritbuion.
%sd: standard deviation of required normal

%Generate uniform random variables
Xl=twister (N, 1) ;
X2=twister (N, 1) ;

sequence .

%Generate normal random variables.
Yl=sdxsqrt(—2xlog (X1)).*cos(2*pi*X2)+mean;
Y2=sd*sqrt(—2xlog(X1)).*sin (2% pi*X2)+mean;

end

twister.cpp

”mex.h”
“matrix .h”
<math . h>
<string .h>
<ctype.h>

#include
#include
#include
#include
#include

[3 sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk oK 3k sk sk sk K sk sk sk sk ok 3K sk sk sk K ok sk sk sk sk ok oK sk sk sk oK 3K sk sk sk sk ok sk sk sk sk ok oK sk sk sk sk ok sk sk ok sk ok ok sk sk sk kK

3
* Mersenne Twister code:
*/

/%
A C—program for MTI19937,
Coded by Takuji

with

Before using, initialize the
or init_by_array (init_key , key_length).
(©)
reserved .

Copyright
All rights

Redistribution and use in
modification , are permitted provided
are met:

that

1. Redistributions of source code must
notice , this list of conditions and

2. Redistributions in binary form must
notice , this list of conditions and
documentation and/or other materials

with given mean and

initialization
Nishimura and Makoto Matsumoto .
state by using

1997 — 2002, Makoto Matsumoto and Takuji

source and binary

,pd, Ctrs’ ,[45,50,55,60,65,70,75]);

‘mu’ L1, sigma’,2);

standard

to be generated.

distritbuion .

improved 2002/1/26.

init_genrand (seed)

Nishimura ,

forms, with or without
the following conditions

retain the above copyright
the following disclaimer.

reproduce the above copyright
the following disclaimer in the
provided with the distribution.

69

96

98

99
100
101
102
103
104
105
106
107
108
109
110
111

14

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS ; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http ://www. math.keio .ac.jp/matumoto/emt. html
email : matumoto@math. keio.ac.jp

*/

/* Period parameters x/

#define N 624

#define M 397

#define MATRIX_A 0x9908b0dfUL /* constant vector a */
#define UPPER_MASK 0x80000000UL /% most significant w—r bits x/
#define LOWER MASK Ox7fffffffUL /+ least significant r bits =/

static unsigned long mt[N]; /% the array for the state vector =/
static int mti=N+1; /% mti==N+1 means mt[N] is not initialized =x/

/% initializes mt[N] with a seed x*/
void init_genrand (unsigned long s)

{
mt[0]= s & OxffffffffUL;
for (mti=1; mti<N; mti++) {
mt[mti] =
(1812433253UL % (mt[mti—1] ~ (mt[mti—1] >> 30)) + mti);
/+* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. =/
/+* In the previous versions, MSBs of the seed affect */
/* only MSBs of the array mt[]. */
/+ 2002/01/09 modified by Makoto Matsumoto */
mt[mti] &= OxffffffffUL;
/* for >32 bit machines =/
}
}

/+ initialize by an array with array—length x/

/% init_key 1is the array for initializing keys =x/

/+ key_length is its length x/

void init_by_array (unsigned long init_key[], unsigned long key_length)

{

int i, j, k;

init_genrand (19650218UL);

i=1; j=0;

k = (N>key_length ? N : key_length);

for (; k; k—) {
mt[i] = (mt[i] ~ ((mt[i—1] ~ (mt[i—1] >> 30)) * 1664525UL))

+ init_key[j] + j; /% non linear =/

mt[i] &= OxffffffffUL; /+« for WORDSIZE > 32 machines x*/
445 j++;
if (i>N) { mt[0] = mt[N-1]; i=1; }
if (j>=key_length) j=0;

}

for (k=N—1; k; k—) {
mt[i] = (mt[i] ~ ((mt[i—1] ~ (mt[i—1] >> 30)) * 1566083941UL))

— i; /* non linear x/

mt[i] &= OxffffffffUL; /+« for WORDSIZE > 32 machines x*/
1++;
if (i>N) { mt[0] = mt[N-1]; i=1; }

}

mt[0] = 0x80000000UL; /%« MSB is 1; assuring non—zero initial array =/

}

/+* generates a random number on [0,0 xffffffff]—interval =/

112 unsigned long genrand_int32 (void)

s {

114 unsigned long y;

115 static unsigned long mag01[2]={0x0UL, MATRIX_A};

116 /+* mag0l[x] = x * MATRIX. A for x=0,1 =%/

117

18 if (mti >=N) { /+ generate N words at one time s/

119 int kk;

120

121 if (mti == N+1) /* if init_genrand () has not been called, =/
122 init_genrand (5489UL); /% a default initial seed is used =/
123

124 for (kk=0;kk<N-M;kk++) {

125 y = (mt[kk]&UPPER_MASK) | (mt[kk+1]&LOWER MASK) ;
126 mt[kk] = mt[kk+M] ~ (y >> 1) " magOl[y & OxIUL]J;
127 }

128 for (;kk<N—1;kk++) {

129 y = (mt[kk]&UPPER_MASK) | (mt[kk+1]&LOWER MASK) ;
130 mt[kk] = mt[kk+(MN)] *~ (y >> 1) " magOl[y & OxIUL];
131

132 y = (mt[N—1]&UPPER_MASK) | (mt[0]&LOWER MASK) ;

133 mt[N—1] = mt[M—1] ~ (y >> 1) ~ mag0Ol[y & O0x1UL];

134

135 mti = 0;

136 }

137

138 y = mt[mti++];

139

140 /+ Tempering x/

141 y "= (y > 11);

142 y "= (y << 7) & 0x9d2¢5680UL;

143 y "= (y << 15) & 0xefc60000UL;

144 y "= (y > 18);

145

146 return y,;

147}

149 /% generates a random number on [0,0x7fffffff]—interval =/
150 long genrand_int31 (void)

152 return (long)(genrand_int32 ()>>1);

153 }

155 /% generates a random number on [0,l]—real—interval x/
156 double genrand_reall (void)

157 {

158 return genrand_int32 () %(1.0/4294967295.0);
159 /+ divided by 27°32—1 =x/

160}

12 /* generates a random number on [0,])—real—interval x/
163 double genrand_real2 (void)

164 {

165 return genrand_int32 () *(1.0/4294967296.0) ;
166 /+ divided by 2732 x/

167 }

160 /% generates a random number on (0,l)—real—interval =/

170 double genrand_real3 (void)

i {

172 return (((double)genrand_int32()) + 0.5)%(1.0/4294967296.0);
173 /+ divided by 2732 x/

174}

176 /* generates a random number on [0,1) with 53—bit resolution %/
177 double genrand_res53 (void)

178 {

179 unsigned long a=genrand_int32 ()>>5, b=genrand_int32 ()>>6;
180 return (ax67108864.0+b) x(1.0/9007199254740992.0);

152 /* These real versions are due to Isaku Wada, 2002/01/09 added =/

185 /* sk 3k sk sk sk sk sk sk sk sk sk skosk sk sk sk sk sk sk sk sk skosk sk sk sk sk sk skosk sk sk sk sk sk sk sk skosk skosk sk sk sk sk sk sk sk sk sk skosk sk sk sk sk sk sk sk sk sk skosk sk sk sk skoskosk sk sk skoskosk ok
186 *
157 x MATLAB code:

188 */

189
190 /% the gateway function x/
91 void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray xprhs|[])

192 {

193 int errMsgNum = 0;

194

195 /+* First time through.

196 */

197 if (mti == N+1) init_genrand(5489UL);

198

199 if (nlhs > 1) {

200 mexErrMsgldAndTxt (" twister : TooManyOutputs”, “"Too many output arguments.”);

201 }

202

203 /+* No args given, return a scalar.

204 */

205 if (nrhs == 0) {

206 plhs[0] = mxCreateDoubleScalar(genrand_res53());

20

208 } else if ((nrhs > 0) & (mxIsChar(prhs[0]))) {

209 char theString[10], *p = theString;

210 if (mxGetString (prhs[0],theString ,sizeof(theString))) {

211 mexErrMsgldAndTxt (" twister : BadStringArg”, “Invalid string arg.”);

212 1

213 for (;xp;p++) *p = tolower(*p); /* need strncasecmp =/

214 if (strncmp(theString ,”state”,sizeof (theString))) {

215 mexErrMsgldAndTxt (" twister : BadStringArg”, "Invalid string arg.”);

216 } else if (nrhs > 2) {

217 mexErrMsgldAndTxt (" twister : TooManylInputs”, “Too many input arguments.”);

218 }

219

220 /+* Return the old state when setting the state only if asked for, but

21 * always return current state when reading the state.

2 */

223 if ((nlhs > 0) || (nrhs == 1)) {

224 plhs[0] = mxCreateNumericMatrix (1 ,N+1,mxUINT32_CLASS,mxREAL) ;

225 unsigned long *q = mt, *p = (unsigned longx*)mxGetData(plhs[0]);

226 for (int i=N; i; i——) *xp++ = xq++;

27 *p++ = mti;

228 }

229

230 /* Init or set the state.

231 */

232 if (nrhs == 2) {

233 unsigned long initLen = (unsigned long)mxGetNumberOfElements(prhs[1]);

234 if (initLen == 1) {

235 /* M&N’s default initializer (see genrand_int32) is

236 * 5489UL, make zero do the same thing as that.

237 */

238 unsigned long initVal = (unsigned long)mxGetScalar(prhs[1]);

239 if (initVal == 0) initVal = 5489UL;

240 init_genrand (initVal);

241 } else if (mxIsDouble(prhs[1])) {

242 if (initLen <= N) {

243 double *q = (doublex)mxGetData(prhs[1]);

244 unsigned long init[N], *p = init;

245 for (int i=initLen; i; i——) *p++ = (unsigned long) xq++;

246 init_by_array (init , initLen);

247 } oelse {

248 mexErrMsgldAndTxt (" twister : InvalidInitLen”, " Initializer J must have fewer than

625 elements.”);

249

250 } else if (mxIsUint32(prhs[1])) {

251 unsigned long stateLen = (unsigned long)mxGetNumberOfElements(prhs[1]);

252 unsigned long *state = (unsigned long=x)mxGetData(prhs[1]);

253 if ((stateLen == N+1) && (state [N] <= N)) {

254 unsigned long xq = state , *p = mt;

255 for (int i=N; i; i——) *p++ = xq++;

256 mti = (int) *xq++;

257 } oelse {

258 mexErrMsgldAndTxt (" twister : InvalidStateLen”, “Invalid state vector S.”);

259 }

260 } else {

261 mexErrMsgldAndTxt(”twister : InvalidInitOrState”, ”Second input must be an initializer
or a state vector.”);

262 }

263 }

15 cleanup:

265 } else {

266 int nelem, localDims[10];

267 int *dims = localDims;

268 int ndim = (nrhs == 1) ? mxGetNumberOfElements(prhs[0]) : nrhs;

269

270 if (ndim > 10)

271 dims = (int *)mxCalloc(ndim, sizeof(int));

Y] }

273

274 /+* Individual size args given.

*/

276 if (nrhs > 1) {

277 int xp = dims;

278 nelem = 1;

279 for (int i=0; i<ndim; i++) {

280 if ((!mxIsDouble(prhs[i])) || (mxGetNumberOfElements(prhs[i])!=1) || mxIsComplex (prhs[
in {

281 errMsgNum = 101; goto cleanup;

282

283 nelem %= *p++ = (int)mxGetScalar(prhs[i]);

284 }

285

286 /+* Size vector given.

287 */

288 } else { /« nrhs == 1, nrhs==0 has already been weeded out x*/

289 if ((!mxIsDouble(prhs[0])) || (mxGetNumberOfElements(prhs[0])<1) || mxIsComplex(prhs[0]))

290 errMsgNum = 102; goto cleanup;

291

92 /+* Single size given, we’ll return a square matrix.

293 */

294 } else if (ndim == 1) {

295 ndim = 2;

296 int n = (int)mxGetScalar(prhs[0]);

297 dims[0] = n; dims[1] = n;

298 nelem = nxn;

299

300 /* Size vector.

301 */

302 } else {

303 int *p = dims ;

304 double *q = (double*)mxGetData(prhs[0]);

305 nelem = 1;

306 for (int i=ndim; i; i——) nelem %= *p++ = (int)xq++;

307 }

308 }

309

310 for (int i=0; i<ndim; i++) {

311 if ((dims[i] < 0) || dims[i] > INT_MAX) {

312 errMsgNum = 103; goto cleanup;

313 }

314 }

315

316 /+* Create the output matrix, get a pointer to its data, and fill it

317 # in with random values.

318 */

19 {

320 plhs[0] = mxCreateNumericArray (ndim, dims ,mxDOUBLE_CLASS,mxREAL) ;

21 double xr = (doublex) mxGetData(plhs[0]);

2 for (int i=nelem; i; i——,r++) *r = genrand_res53();

323 }

324

if (dims != localDims) mxFree((void x)dims);
if (errMsgNum) {

mexErrMsgldAndTxt (" twister : InvalidSize”, "Invalid output size.”);
}

	Introduction
	Uniform Random Variables
	Classic Generators
	Mersenne Twister Generator

	Binomial Random Variables
	General Transformation Method
	Generation
	Generate from Bernoulli Random Variables
	Approximate the CDF with normal PDF
	Directly use built-in functions for calculating binomial PMF

	Verification
	Numerical Characteristics
	Normalized Histogram
	Common Verification Fallacies

	Non-parametric Hypothesis Test

	Two Independent Normal Random Variables
	Generation
	Verification
	Numberical Characteristics

	Normalized Histogram
	Verification
	Test of Normality
	Test of Independence

	Conclusion
	References

