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Introduction Background

Background

Data availability is not and is a problem.

GPS traces, phone call histories and social media postings can be used
to identify social structures and predict activity patterns.
When the number of agents in a network becomes extremely large, al-
gorithm running on it can become intractable due to lack of memory.

Specifically, to represent a social network with a graph model, O(n2)
space is required for the adjacency (proximity) matrix, where n is the
number of nodes.

To derive such a proximity matrix from GPS data, proximity vectors,
based on distance between each pair of nodes, should be average over
time.
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Introduction Contribution

Contribution

They design an algorithm that maintains a compact representation for
streaming proximity data.

For n nodes, only O(Nn log T ) is needed instead of O(n2), where N is
an error parameter, and T is number of elements in stream.

They prove that the error introduced in this sparse representation is
bounded by 1

N times the variance of elements in stream.
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Framework Overview

Overview

Coresets for Vector Summarization with Applications to Network Graphs

Bound on (13): Observe that
∥∥∥∥∥
∑

i

(
w′i −

w′i∑
j w
′′
j

)
qi

∥∥∥∥∥

2

=

∥∥∥∥∥
∑

i

w′i

(
1− 1∑

j w
′′
j

)∥∥∥∥∥

2

=

(
1− 1∑

j w
′′
j

)2

·
∥∥∥∥∥
∑

i

w′iqi

∥∥∥∥∥

2

.

(14)

Let τ = v√
Nx

. By the triangle inequality

v =
∑
j uj ‖(pj − Eu, x)‖ ≤∑j uj ‖pj − Eu‖+ x = 2x. (15)

By choosing c > 16 in (2) we have N ≥ 16, so

τ ≤ 2√
N
≤ 1

2 . (16)

Substituting a = −∑i siqi and b =
∑
i(si−w′j)qj in (11)

bounds the right expression of (14) by
∥∥∥∥∥
∑

i

w′iqi

∥∥∥∥∥

2

≤ 2

∥∥∥∥∥
∑

i

siqi

∥∥∥∥∥

2

+ 2

∥∥∥∥∥
∑

i

(si − w′j)qj
∥∥∥∥∥

2

≤ 2x2

v2
+

2

N
=

2(1 + τ2)

τ2N
,

(17)

where the last inequality follows from (3) and (4). For
bounding the left expression of (14), note that
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Figure 2. Given a set of vectors from a standard Gaussian distribu-
tion, the graph shows the `2 error (y-axis) between their sum and
their approximated sum using only N samples (the x-axis) based
on Count Sketch (Charikar et al., 2004), Count Min (Cormode &
Muthukrishnan, 2005a), Count Median (Cormode & Muthukrish-
nan, 2005b), BJKST (Bar-Yossef et al., 2002), F2-Sketch (Alon
et al., 1996b), and our coreset.

Figure 3. The overview of our designed system to extract and rep-
resent social networks is given.

for a sufficiently large constant α, e.g. α = 3, where in the
last inequality we used (16). Since v ≤ 2x by (15) we have
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where in the second inequality we used (10). Plugging this
in (19) and replacing N by 4αN = O(N) in the proof
above, yields the desired bound

‖Eu − Ew‖2 ≤ αv2

N
≤ 4α·varu

N
.

5. Experimental Results
We implemented the coreset algorithms in 1 and 2. We also
implemented a brute force method for determining the so-
cial network that considers the entire data. We used this
method to derive the ground truth for the social network
for small scale data. Our system’s overview is given in Fig-
ure 3 and explained in Section 1.1. The coreset algorithm
computes the heavy hitters by approximating the sum of

Figure 1: The overview of the framework.
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Framework Overview

GPS data and proximity

Input: a stream of T GPS points (time, userID, longitude, latitude).

Maintain in memory:

pos: an array of length n storing current locations of users.
proximity coresets: for each node, a O(N log T ) number of sparse prox-
imity vectors.

Whenever an new record of node u arrives:
1 pos[u] is updated according to the current position.
2 For each node v, dist(u, v) = ||pos[u]− pos[v]|| is computed,
p = (0, ..., 0, proxu = e−dist(u,v), 0, ..., 0) is generated and added to
the proximity coreset of node v.
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Framework Problem

Problem

Problem

Consider a stream of T sparse vectors p1, p2, ..., pT . Maintain a subset of
N � T input vectors, and a corresponding vector of positive reals
(weights), w1, w2, ..., wN , where the sum p̂ :=

∑N
i=1wipi approximates

the sum p̄ :=
∑T

i=1 pi up to a provably small error that depends on the

variance var(p) :=
∑T

i=1 ||pi − p̄||2 and an error parameter ε := f(N),

||p̄− p̂||2 ≤ εvar(p) (1)
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Algorithm Off-line Coreset Algorithm

Off-line Coreset Algorithm

Algorithm 1 Coreset(P, u, ε)

1: p̄←∑T
j=1 ujpj , x←

∑T
j=1 uj ||pj − p̄||

2: for i← 1 to n do
3: qi ← (pi−p̄,x)

||(pi−p̄,x)|| , si ←
ui||(pi−p̄,x)||∑T
j=1 uj ||(pj−p̄,x)||

4: end for
5: A← collection of shifted qi.
6: Use Frank-Wolfe method to find a coreset S

of dα/εe vectors and the respective weight
vector w′, where α is a constant.

7: for i← 1 to dα/εe do
8: w′′i ←

∑T
j=1 uj ||(pj−p̄,x)||w′

j

||(pi−p̄,x)||
9: wi =

w′′
i∑dα/εe

j=1 w′′
j

10: end for
11: return (S,w)

Algorithm 1 CORESET-SUMVECS(A, ε)

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Algorithm 1 CORESET-SUMVECS(A, ε)

1: Input: A: n input points a1, . . . , an in Rd

2: Input: ε ∈ (0, 1): the approximation error
3: Output: w ∈ [0,∞)n: non-negative weights
4: A← A−mean(A)
5: A← cA where c is a constant s.t. var(A) = 1
6: w ← (1, 0, . . . , 0)
7: j ← 1, p← Aj , J ← {j}
8: Mj =

{
y2 | y = A ·AT

j

}
9: for i = 1, . . . , n do

10: j ← argmin {wJ ·MJ}
11: G←W ′ ·AJ where W ′

i,i =
√
wi

12: ‖c‖ = ‖GTG)‖2F
13: c · p =∑|J|

i=1Gp
T

14: ‖c− p‖ =
√

1 + ‖c‖2 − c · p
15: compp(v) = 1/‖c− p‖ − (c · p) /‖c− p‖
16: ‖c− c′‖ = ‖c− p‖ − compp(v)
17: α = ‖c− c′‖/‖c− p‖
18: w ← w(1− |α|)
19: wj ← wj + α
20: w ← w/

∑n
i=1 wi

21: Mj ←
{
y2 | y = A ·AT

j

}

22: J ← J ∪ {j}
23: if ‖c‖2 ≤ ε then
24: break
25: end if
26: end for
27: return w

1

(a) Coreset for sum of vectors algorithm
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(b) Illustration showing first 3 steps of the computation

computing a matrix C, and analyze the running time to show that the C can be constructed in
O(k2/ε2) iterations.

Let A ∈ Rn×d be a matrix of rank d, and let UΣV T = A denote its full SVD. Let W ∈ Rn×n be a
diagonal matrix. Let k ∈ [1, d− 1] be an integer. For every i ∈ [n] let

vi =

(
Ui,1, · · · , Ui,k,

Ui,k+1:dΣk+1:d,k+1:d

‖Σk+1:d,k+1:d‖
, 1

)
. (3)

Then the following two results hold:

Theorem 2 (Coreset for sum of vectors). For every set of of n vectors v1, · · · , vn in Rd and every
ε ∈ (0, 1), a weight vectorw ∈ (0,∞)n of sparsity ‖w‖0 ≤ 1/ε2 can be computed deterministically
in O(nd/ε) time such that

∥∥∥∥∥
n∑

i=1

vi −
n∑

i=1

wivi

∥∥∥∥∥ ≤ ε
n∑

i=1

‖vi‖2. (4)

Section 4 establishes a proof for Theorem 2.

Theorem 3 (Coreset for Low rank approximation). For every X ∈ Rd×(d−k) such that XTX = I ,
∣∣∣∣1−
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T
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Section 5 establishes a proof for Theorem 3.

3.1 Proof of Theorem 1

Proof of Theorem 1(a). Replacing vi with vivTi , ‖vi‖2 with ‖vivTi ‖, and ε by ε/(5k) in Theorem 2
yields ∥∥∥∥∥

∑

i

viv
T
i −Wi,iviv

T
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∥∥∥∥∥ ≤ (ε/5k)
n∑
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5

Figure 2: Illustration of the first
three steps for Frank-Wolfe
method.
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Algorithm Streaming Algorithm

Streaming Algorithm

Algorithm 2 Streaming-Coreset(stream, ε)

1: while stream is not empty do
2: Bi ← next dα log T/εe vectors in stream.
3: Insert Bi into the binary tree.
4: while The tree can grow upwards do
5: Form a new parent Si

6: Si ← Coreset(Ci1 ∪ Ci2, wi1 ∪ wi2, ε)
7: end while
8: end while
9: S ← union of all root nodes.

10: w ← union of all weight vectors of root nodes.
11: return (S,w)

Spatial complexity:
O(
⌈
α
ε log T

⌉
) +

⌈
α
ε

⌉
O(log T ) = O(1

ε log T )
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Algorithm Parallel Computation

Parallel Computation

ଵܤ	 ଷܤ	 ହܤ	 ଻ܤ	 ଶܤ	 ସܤ	 ଺ܤ	 ଼ܤ	

Figure 3: Coreset computation of streaming data that is distributed into M = 2
machines. The odd/even vectors in the stream are compressed by the machine on
the left/right, respectively. A server (possibly one of these machines) can collect
the root nodes of each machine to obtain the final coreset.
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Correctness Theorem

Theorem

Let u ∈ DT be a distribution over a set P = {p1, ..., pT } of T vectors in
Rn, and let N ≥ 1. Denote (S,w) as the output of a call to
Coreset(P, u, 1/N). Then w ∈ DT consists O(N) non-zero entries, such
that the sum p̄ =

∑T
i=1 uipi deviates from the sum p̂ =

∑T
i=1wipi by at

most a (1/N)-fraction of the variance varu =
∑T

i=1 ui||pi − p̂||, i.e.,

||p̄− p̂||2 ≤ 1

N
varu (2)
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Correctness Augmentation and α

Augmentation and α

Augmentation

x←∑T
j=1 uj ||pj − p̄||, qi ←

(pi−p̄,x)
||(pi−p̄,x)|| , si ←

ui||(pi−p̄,x)||∑T
j=1 uj ||(pj−p̄,x)||

⇒ ||∑i(si −w′i)qi||2 = ||∑i siqi −
∑

j w
′
jqj ||2 ≤ 1

N , where w has at most
N non-zero entries.

α

It suffices to prove that ||p̄− p̂||2 ≤ α
N varu for O(N) vectors.

Replacing N with N/α leads to O(N/α) = O(N) complexity.

By loosing the upper bound with α
N varu, it is easy to bound other

quantities.

α = 3 is sufficiently large for the theorem to hold.
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Experiments Experiment 1

Experiment 1
Coresets for Vector Summarization with Applications to Network Graphs
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Figure 2. Given a set of vectors from a standard Gaussian distribu-
tion, the graph shows the `2 error (y-axis) between their sum and
their approximated sum using only N samples (the x-axis) based
on Count Sketch (Charikar et al., 2004), Count Min (Cormode &
Muthukrishnan, 2005a), Count Median (Cormode & Muthukrish-
nan, 2005b), BJKST (Bar-Yossef et al., 2002), F2-Sketch (Alon
et al., 1996b), and our coreset.

Figure 3. The overview of our designed system to extract and rep-
resent social networks is given.

for a sufficiently large constant α, e.g. α = 3, where in the
last inequality we used (16). Since v ≤ 2x by (15) we have
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where in the second inequality we used (10). Plugging this
in (19) and replacing N by 4αN = O(N) in the proof
above, yields the desired bound

‖Eu − Ew‖2 ≤ αv2

N
≤ 4α·varu

N
.

5. Experimental Results
We implemented the coreset algorithms in 1 and 2. We also
implemented a brute force method for determining the so-
cial network that considers the entire data. We used this
method to derive the ground truth for the social network
for small scale data. Our system’s overview is given in Fig-
ure 3 and explained in Section 1.1. The coreset algorithm
computes the heavy hitters by approximating the sum of

Figure 4: Coreset algorithm compared with other sketch algorithms on a synthetic
standard gaussion dataset.
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Experiments Experiment 2

Experiment 2

Figure 5: Coreset algorithm on several networks from Stanford Large Network
Dataset (SNAP).
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Figure 6: Coreset algorithm on NYC GPS dataset, which contains 13,249 taxi
cabs and 14,776,616 GPS entries.
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Remarks

Summary: A coreset algorithm is proposed to summarize streaming
data sets, which takes a stream of vectors as input and maintain their
sum using small memory.

Slight problems/regrets:

Mixed use of n: First number of nodes, then number of entries.
No error guarantee for streaming algorithm.
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