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Background

o Data availability is not and is a problem.
o GPS traces, phone call histories and social media postings can be used
to identify social structures and predict activity patterns.
o When the number of agents in a network becomes extremely large, al-
gorithm running on it can become intractable due to lack of memory.
@ Specifically, to represent a social network with a graph model, O(n?)
space is required for the adjacency (proximity) matrix, where n is the
number of nodes.

@ To derive such a proximity matrix from GPS data, proximity vectors,
based on distance between each pair of nodes, should be average over
time.
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Contribution

@ They design an algorithm that maintains a compact representation for
streaming proximity data.

o For n nodes, only O(NnlogT) is needed instead of O(n?), where N is
an error parameter, and 7' is number of elements in stream.

@ They prove that the error introduced in this sparse representation is
bounded by % times the variance of elements in stream.
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Overview
Streaming GPS

Pre-processing Distance matrix
data (data formatting) computation
Matrix Summarization
(representation with Coresets)

Matrix Construction

(approximation with Coresets)

Figure 1: The overview of the framework.
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GPS data and proximity

@ Input: a stream of T' GPS points (time, userI D, longitude, latitude).
@ Maintain in memory:

e pos: an array of length n storing current locations of users.

e proximity coresets: for each node, a O(N logT') number of sparse prox-
imity vectors.

@ Whenever an new record of node u arrives:

@ poslu] is updated according to the current position.

@ For each node v, dist(u,v) = ||pos|u] — pos[v]|| is computed,
p=(0,...,0, prox, = e~4stwv) (.. 0) is generated and added to
the proximity coreset of node v.
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Problem

Problem

Consider a stream of T sparse vectors p1, ps, ..., pr. Maintain a subset of
N < T input vectors, and a corresponding vector of positive reals
(weights), wy, ws, ..., wx, where the sum p := le\il w;p; approximates
the sum p := Z;F:lpi up to a provably small error that depends on the
variance var(p) := Y., ||p; — p||> and an error parameter € := f(N),

15— #lI* < evar(p) (1)

v
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AT Off-line Coreset Algorithm

Off-line Coreset Algorithm

Algorithm 1 Coreset(P, u, ¢)
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return (S, w)

Dan Feldman, Sedat Ozer, Daniela Rus Coresets for Vector Summarization

0.8
0.6
0.4
0.2

-0.2
-0.4
-0.6
-0.8

-1 -0.8-06-04-02 0 0.2 0.4 06 0.8 1

Figure 2: Illustration of the first

three steps for Frank-Wolfe
method.
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Streaming Algorithm

Algorithm 2 Streaming-Coreset(stream, €) O
1. while stream is not empty do .
2: B; + next [alogT/e| vectors in stream. @) fa/el
3: Insert B; into the binary tree.
4: while The tree can grow upwards do &) ‘
5: Form a new parent S; .
6: S; Coreset(C’il U Ci2, wi1 U w;o, 6) @ .
7. end while XSy
8: end while ONQL
9: S < union of all root nodes.
10: w < union of all weight vectors of root nodes. @ h
11: return (S, w) [alogT /e
\::f(;;';}"l
Spatial complexity: (B o
O([21ogT]) + [2] O(log T) = O(L1ogT) : 0GosT)
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Parallel Computation

Figure 3: Coreset computation of streaming data that is distributed into M = 2
machines. The odd/even vectors in the stream are compressed by the machine on
the left/right, respectively. A server (possibly one of these machines) can collect
the root nodes of each machine to obtain the final coreset.
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Correctness RN

Theorem

Let uw € DT be a distribution over a set P = {p1, ...,pr} of T vectors in
R", and let N > 1. Denote (S,w) as the output of a call to

Coreset(P,u,1/N). Then w € DT consists O(N) non-zero entries, such
that the sum p = ZiT:1 u;p; deviates from the sujrp p= ZiT:1 w;p; by at
most a (1/N)-fraction of the variance var, =) ,_; wi||pi — D

, I.e.,
e 1
16 = lI" < vary (2)
y
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Augmentation

T b = 3l g (pi=px) uil|(pi—p,2)||
T Zj:l ujllp; — Pl i < M=, 5t < ST sl 3 —Pa)]

= |8 —whal||? = | Y, siqi — > w}quZ < 4, where w has at most
N non-zero entries.

v

(07

o It suffices to prove that |[p — p||* < Lwar, for O(N) vectors.
o Replacing N with N/« leads to O(N/a)) = O(N) complexity.

@ By loosing the upper bound with fvary, it is easy to bound other
quantities.

o «a = 3 is sufficiently large for the theorem to hold.
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Experiment 1
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Figure 4: Coreset algorithm compared with other sketch algorithms on a synthetic
standard gaussion dataset.
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Experiment 2

e

(a) Amazon data

(d) Wikitalk data (e) Orkut data m(f) LiveJournal data

Normalized Eror

Nomalzes Eror

Nomalzed Error

(b) YouTube data (c) DBLP data

Nomalized Er
Nermaized Eror
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Figure 5: Coreset algorithm on several networks from Stanford Large Network
Dataset (SNAP).
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Experiment 3

Normalized Error

Figure 6: Coreset algorithm on NYC GPS dataset, which contains 13,249 taxi
cabs and 14,776,616 GPS entries.
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Remarks

@ Summary: A coreset algorithm is proposed to summarize streaming
data sets, which takes a stream of vectors as input and maintain their
sum using small memory.

@ Slight problems/regrets:

o Mixed use of n: First number of nodes, then number of entries.
o No error guarantee for streaming algorithm.
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