Coresets for Vector Summarization with Applications to Network Graphs

Dan Feldman, Sedat Ozer, Daniela Rus

Computer Science and Artificial Intelligence Laboratory, MIT

Presented by Zexi Huang

October 27, 2017

- Introduction
- Framework
- 3 Algorithm
- Correctness
- Experiments
- 6 Remarks

- Introduction
- 2 Framework
- 3 Algorithm
- Correctness
- Experiments
- 6 Remarks

Background

- Data availability is not and is a problem.
 - GPS traces, phone call histories and social media postings can be used to identify social structures and predict activity patterns.
 - When the number of agents in a network becomes extremely large, algorithm running on it can become intractable due to lack of memory.
- Specifically, to represent a social network with a graph model, $O(n^2)$ space is required for the adjacency (proximity) matrix, where n is the number of nodes.
- To derive such a proximity matrix from GPS data, proximity vectors, based on distance between each pair of nodes, should be average over time.

Contribution

- They design an algorithm that maintains a compact representation for streaming proximity data.
 - For n nodes, only $O(Nn\log T)$ is needed instead of $O(n^2)$, where N is an error parameter, and T is number of elements in stream.
- They prove that the error introduced in this sparse representation is bounded by $\frac{1}{N}$ times the variance of elements in stream.

- Introduction
- 2 Framework
- Algorithm
- 4 Correctness
- Experiments
- 6 Remarks

Overview

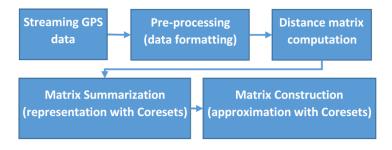


Figure 1: The overview of the framework.

GPS data and proximity

- ullet Input: a stream of T GPS points (time, userID, longitude, latitude).
- Maintain in memory:
 - ullet pos: an array of length n storing current locations of users.
 - proximity coresets: for each node, a $O(N\log T)$ number of sparse proximity vectors.
- Whenever an new record of node u arrives:
 - $oldsymbol{0}$ pos[u] is updated according to the current position.
 - ② For each node v, dist(u,v) = ||pos[u] pos[v]|| is computed, $p = (0,...,0,prox_u = e^{-dist(u,v)},0,...,0)$ is generated and added to the proximity coreset of node v.

Problem

Problem

Consider a stream of T sparse vectors $p_1,p_2,...,p_T$. Maintain a subset of $N \ll T$ input vectors, and a corresponding vector of positive reals (weights), $w_1,w_2,...,w_N$, where the sum $\hat{p}:=\sum_{i=1}^N w_i p_i$ approximates the sum $\bar{p}:=\sum_{i=1}^T p_i$ up to a provably small error that depends on the variance $var(p):=\sum_{i=1}^T ||p_i-\bar{p}||^2$ and an error parameter $\epsilon:=f(N)$,

$$||\bar{p} - \hat{p}||^2 \le \epsilon var(p) \tag{1}$$

- Introduction
- 2 Framework
- 3 Algorithm
- 4 Correctness
- Experiments
- 6 Remarks

Off-line Coreset Algorithm

Algorithm 1 Coreset(P, u, ϵ)

1:
$$\bar{p} \leftarrow \sum_{j=1}^{T} u_j p_j, x \leftarrow \sum_{j=1}^{T} u_j ||p_j - \bar{p}||$$

2: **for** $i \leftarrow 1$ to n **do**

3:
$$q_i \leftarrow \frac{(p_i - \bar{p}, x)}{||(p_i - \bar{p}, x)||}, \ s_i \leftarrow \frac{u_i||(p_i - \bar{p}, x)||}{\sum_{j=1}^T u_j||(p_j - \bar{p}, x)||}$$

- 4: end for
- 5: $A \leftarrow \text{collection of shifted } q_i$.
- 6: Use Frank-Wolfe method to find a coreset S of $\lceil \alpha/\epsilon \rceil$ vectors and the respective weight vector w', where α is a constant.
- 7: **for** $i \leftarrow 1$ to $\lceil \alpha/\epsilon \rceil$ **do**

8:
$$w_i'' \leftarrow \frac{\sum_{j=1}^{T} u_j ||(p_j - \bar{p}, x)|| w_j'}{||(p_i - \bar{p}, x)||}$$

9: $w_i = \frac{w_i''}{\sum_{j=1}^{\lceil \alpha/e \rceil} w_i''}$

9:
$$w_i = \frac{w_i^{\prime\prime}}{\sum_{j=1}^{\lceil \alpha/\epsilon \rceil} w_j^{\prime\prime}}$$

- 10: end for
- 11: return (S, w)

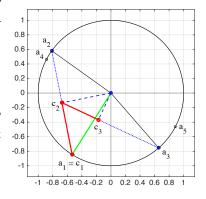


Figure 2: Illustration of the first three steps for Frank-Wolfe method.

Streaming Algorithm

Algorithm 2 Streaming-Coreset($stream, \epsilon$)

1: while stream is not empty do

 $B_i \leftarrow \text{next} \left[\alpha \log T/\epsilon\right] \text{ vectors in stream.}$

3: Insert B_i into the binary tree.

4: while The tree can grow upwards do

5 Form a new parent S_i

6. $S_i \leftarrow \mathsf{Coreset}(C_{i1} \cup C_{i2}, w_{i1} \cup w_{i2}, \epsilon)$

end while

8: end while

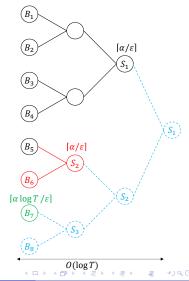
9: $S \leftarrow$ union of all root nodes.

10: $w \leftarrow$ union of all weight vectors of root nodes.

11: return (S, w)

Spatial complexity:

$$O(\lceil \frac{\alpha}{\epsilon} \log T \rceil) + \lceil \frac{\alpha}{\epsilon} \rceil O(\log T) = O(\frac{1}{\epsilon} \log T)$$



Parallel Computation

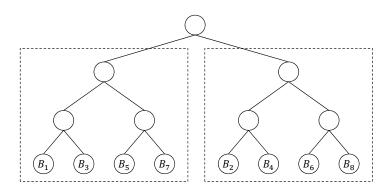


Figure 3: Coreset computation of streaming data that is distributed into M=2 machines. The odd/even vectors in the stream are compressed by the machine on the left/right, respectively. A server (possibly one of these machines) can collect the root nodes of each machine to obtain the final coreset.

- Introduction
- 2 Framework
- Algorithm
- Correctness
- Experiments
- 6 Remarks

Theorem

Let $u \in D^T$ be a distribution over a set $P = \{p_1, ..., p_T\}$ of T vectors in R^n , and let $N \geq 1$. Denote (S, w) as the output of a call to Coreset(P, u, 1/N). Then $w \in D^T$ consists O(N) non-zero entries, such that the sum $\bar{p} = \sum_{i=1}^{T} u_i p_i$ deviates from the sum $\hat{p} = \sum_{i=1}^{T} w_i p_i$ by at most a (1/N)-fraction of the variance $var_u = \sum_{i=1}^{T} u_i ||p_i - \hat{p}||$, i.e.,

$$||\bar{p} - \hat{p}||^2 \le \frac{1}{N} var_u \tag{2}$$

Augmentation and α

Augmentation

$$\begin{array}{l} x \leftarrow \sum_{j=1}^{T} u_{j} || p_{j} - \bar{p} ||, q_{i} \leftarrow \frac{(p_{i} - \bar{p}, x)}{||(p_{i} - \bar{p}, x)||}, \ s_{i} \leftarrow \frac{u_{i} || (p_{i} - \bar{p}, x) ||}{\sum_{j=1}^{T} u_{j} || (p_{j} - \bar{p}, x) ||} \\ \Rightarrow || \sum_{i} (s_{i} - w'_{i}) q_{i} ||^{2} = || \sum_{i} s_{i} q_{i} - \sum_{j} w'_{j} q_{j} ||^{2} \leq \frac{1}{N}, \ \text{where} \ w \ \text{has at most} \\ N \ \text{non-zero entries}. \end{array}$$

 α

- It suffices to prove that $||\bar{p} \hat{p}||^2 \leq \frac{\alpha}{N} var_u$ for O(N) vectors.
 - Replacing N with N/α leads to $O(N/\alpha) = O(N)$ complexity.
- By loosing the upper bound with $\frac{\alpha}{N}var_u$, it is easy to bound other quantities.
- $\alpha = 3$ is sufficiently large for the theorem to hold.

- Introduction
- 2 Framework
- 3 Algorithm
- 4 Correctness
- 5 Experiments
- Remarks

Experiment 1

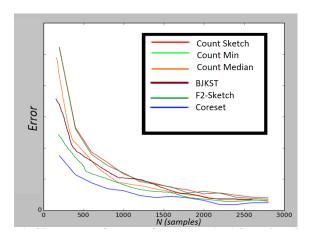


Figure 4: Coreset algorithm compared with other sketch algorithms on a synthetic standard gaussion dataset.

Experiment 2

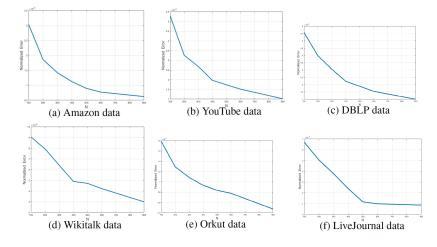


Figure 5: Coreset algorithm on several networks from Stanford Large Network Dataset (SNAP).

Experiment 3

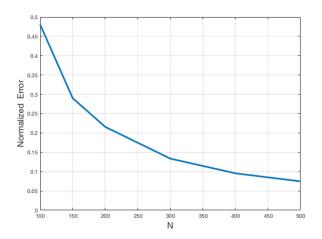


Figure 6: Coreset algorithm on NYC GPS dataset, which contains 13,249 taxi cabs and 14,776,616 GPS entries.

- Introduction
- 2 Framework
- Algorithm
- Correctness
- Experiments
- 6 Remarks

Remarks

- Summary: A coreset algorithm is proposed to summarize streaming data sets, which takes a stream of vectors as input and maintain their sum using small memory.
- Slight problems/regrets:
 - Mixed use of n: First number of nodes, then number of entries.
 - No error guarantee for streaming algorithm.