

Outlines:

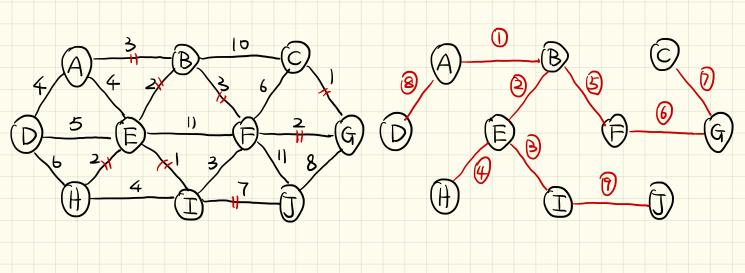
- 1. Algorithm Design
 - Bipartite Graph
- 2. Minimal Spanning Trees
 - Prim's Algorithm
 - Kruskal's Algorithm
- 3. Union-Find Structures

ESCI TA Euo	duation		
- Please log in	to esci. id. ucsb.	edu to complete TA	evaluation
for Sean on	d me, if you have	not done so!	
- Your feedba	ck is crucial to he	lping us improve ou	r teaching quality!
Algorithm Design:			O ·
	: graph whose nodes co	an be divided into tw	osets U and V
	such that every edge of	the graph connects a no	de in U to one in V.
Example:			
		: Given an undirec	
(2)	design an	n algorithm to find who	ether it is
(3)	bipartite		
u	V		

Algorithm Design: Bipartite Graph Bipartite Graph: graph whose nodes can be divided into two sets U and V such that every edge of the graph connects a node in U to one in V. Question: Given an undirected graph, find whether it is bipartite. for each connected components:
(1) Start from a random node s and put it into U. (2) BFS(DFS from s. (2) Put neighbours t of s into V. = DFS: S put neighbors into U/V
if node in V/u. Try to put neighbours of t into U. DFS (neighbours) } 13) return true if no conflicts, otherwise return false

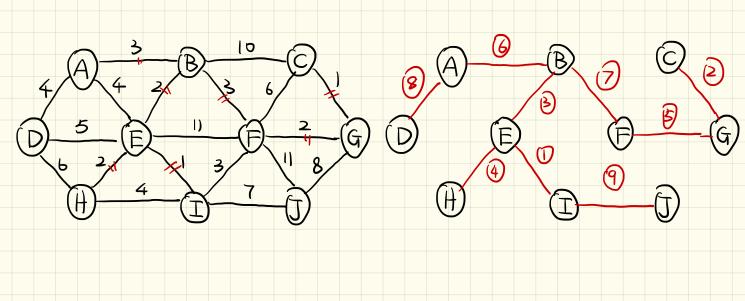
Minimal Spanning Trees

Prim's Algorithm. Iteratively add nodes with the smallest connecting edges



Minimal Spanning Trees

Kruskal's Algorithm: Iteratively add the smallest inter-cluster edges.



Union-Find Structures

Structures: Trees with parent pointers.

Operations:

O Find (i), find the root of node i.

2) Union (i,j): (1) find the root of node i and the root of nodej.

(2) Make one root become the parent of the other.

Heuristics:

① Union-by-Size: when univning, make the root of the larger tree become the parent of the root of the smaller tree.

2) Path compression: when finding, reset the parent of each node visited to be the rost.

Union-Find Structures a. Union(1,2)m = Find(1)Union(3,4)n = Find(4)d. Union(m,n) m=1 m = Find(1)n=6 Union(m,5) **☆** Union(6,7)m = Find(6)Union(m,8)☆ Union(9,10)m = Find(10)n = Find(4)n = Find(2)n. Union(m,n) m = Find(10)p. n = Find(8)q. Union(m,n) ★