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9. (10 points) Prove by inductiorll that T(n) is ®(n log n) for the following recurrence:
T(1)=1
T(n) =2T(n/2)) +n
You can use the recurrence tree to understand the structure of the recursion, but the proof
has to be by induction. Be sure to write down the induction hypothesis and verify the
base case.
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9. (10 points) Prove by inductiogl that T(n) 1s ®(n log n) for the following recurrence:
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9. (10 points) Prove by inductioﬁ that T(n) is ®(n log n) for the following recurrence:
T(1)=1
T(n) = 2T(0/2)) +n
You can use the recurrence tree to understand the structure of the recursion, but the proof
has to be by induction. Be sure to write down the induction hypothesis and verify the
base case.
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(10 points) We are given a set K of n red/green points in 1D space and another set U of
m points whose colors are not known. Suppose we use a scheme in which the color of an
unlabeled point in U is obtained by the color of the nearest point in K. Describe an
algorithm for labeling the points in U. What is the big theta time complexity of your
proposed algorithm? For an extra 10 credit points, find an algorithm with a time
complexity of O((m+n) log (m+n)).
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11. (10 points) We are given a sequence A[l..n] of positive numbers. We want to
approximate the sequence by another sequence B[1..n] in which the values are 0 at either
end and a contiguous sequence of k (to be decided) repeating values, each of magnitude
m (to be decided). The cost of a specific choice of B is cost(B) = »1-,(A(i) — B(i))2.
Find an algorithm for computing the sequence B (defined by the starting point, ending
point, and the constant repeating value m) that minimizes the cost. For an extra 10 credit

points, find an algorithm with a time complexity of O(n?).
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Find an algorithm for computing the sequence B (defined by the starting point, ending
point, and the constant repeating value m) that minimizes the cost. For an extra 10 credit

points, find an algorithm with a time complexity of O(n?). oo
S=.ZAl)
@Im,:rwc Brude Force Aljom‘i-hm
(= 1 ) A
J[or all (4,r) paivs . g on®) Mﬂ
S< EA(I
COW\PA‘( m, with(3) O() M=77n )
Compuke cost®) w oth &) e s'= $+A( o (3
i ’ —9{1‘5 00) ™M = rH-41) m’ = S8 /(r+1—%1) i
Mfdak the minimum Cos+ ol _ g o Sa= ) c :é 2
retum (f,r) thet hos minimum cos+ 0 1) r~—/\-7-‘-/-\ul) A O 2 '”*A 2
U | ) A
.grA(I) 0(02\) w+,
- r-g+ 4 Si=% S'} T j:(SS) §3= Sz"Alﬁ'l)

S = élAu)—m) EA(U- 2 A 4 (r-14)m’

@AZ(I) —2m12 /\ W) (ri1-pa) ni®
g 00 )

£ - r
COSJf(B)=é'A2(r)+__£ A0 1A -m) (1) s
1= V2re) =g 3
Ss' = A(r+|) —2m's’+2m8S + (rh- -fH)m'% (r-{’ﬂ)wf (4)




