
CMPSC 174A/174N Fundamentals of Database System

Normal Form and Decomposition

Discussion Session Friday, 9:00am-9:50am Zexi Huang

Schedule

- Checking Normal Forms
 - General Algorithm
 - Examples
- Decomposition into Normal Forms
 - General Algorithm
 - Examples

Checking Normal Forms

Problem

- lack For a relation R and a set of functional dependencies F, find which normal form R is in.
- ♦ Example: R = (A,B,C), $F = \{A \rightarrow B, B \rightarrow C\}$. Is R in BCNF? Is R in 3NF?

Definition

- \bullet For every FD X \rightarrow A in F, one of the following is true:
 - A is a subset of X.
 - ★ X is a superkey.
 - A is part of some key.

♦ Algorithm

- ♦ Check for every FD $X \rightarrow A$ in F:
 - Is A a subset of X? (Is it trivial?)

 - Is A part of a key?
- If every FD satisfies the conditions above, then *R* is in corresponding normal form. Otherwise not.

Checking Normal Forms

♦ Example 1.1

- $\bullet \quad R = (A,B,C,D), F = \{B \rightarrow C, C \rightarrow D, C \rightarrow A\}.$
- ♦ Is *R* in BCNF? Is *R* in 3NF?

- Identify all candidate keys:
 - **b** B→C, C→D, C→A, *closure*(B)=ABCD. B is a candidate key.
 - Can we stop here?
 - Attribute set that doesn't contain B can't be candidate keys because nothing determines B.
 - B is the only candidate key.
- Checking every non-trivial FD:
 - **b** B→C:
 - - ♦ Is C a superkey? No. Not in BCNF.
 - Is D part of a key? No. Not in 3NF.

Checking Normal Forms

♦ Example 2.1

- $R = (A,B,C,D), F = \{AB \rightarrow C, AB \rightarrow D, C \rightarrow A, D \rightarrow B\}.$
- ▶ Identify the best normal form that *R* satisfies.

- Identify all candidate keys:
 - ▲ A, B, C, D: *closure*(A)=A, *closure*(B)=B, *closure*(C)=AC, *closure*(D)=BD. A, B, C, D are not keys.
 - ♦ AB: AB \rightarrow C, AB \rightarrow D, *closure*(AB)=ABCD. AB is a candidate key.
 - ♦ AD, BC, CD are other candidate keys.
- Checking every non-trivial FD:
 - \land AB \rightarrow C, AB \rightarrow D:
 - ♦ Is AB a superkey?
 - - Is C a superkey? No. Not in BCNF.
 - Is A part of a key?
 - **b** D→B:
 - ♦ Is B part of a key? Yes. In 3NF.

Problem

 \bullet For a relation R and a set of functional dependencies F, decompose R into a set of BCNF/3NF relations.

Requirements

- For BCNF decomposition, we require it to be lossless-join.
- For 3NF decomposition, we require it to be both lossless-join and dependency-preserving.

Algorithm

- Decomposition into BCNF:
 - For every FD $X \rightarrow Y$ in F that violates the BCNF: decompose into (X,Y) and R-Y.
- Decomposition into 3NF:
 - Find the minimal cover of F by making every FD $X \rightarrow Y$ in it:
 - Only a single attribute on the right of the arrow.
 - Eliminate the redundancy on the left of the arrow.
 - Eliminate the redundancy of the FDs.
 - For every FD $X \rightarrow Y1, ..., X \rightarrow Yn$ in the minimal cover: create a relation (X,Y1,...,Yn).
 - If none of the keys of *R* appear in any of these relations, create a relation for one of the keys.

♦ Example 1.2

- $\bullet \quad R = (A,B,C,D), F = \{B \rightarrow C, C \rightarrow D, C \rightarrow A\}.$
- lacktriangle Decompose R into a set of BCNF/3NF relations.

- **♦** BCNF:
 - lack B is the only key for R.
 - ♦ C→D violates BCNF.
 - \bullet Decompose into: (A,B,C) and (C,D).
 - \bullet C \rightarrow A in (A,B,C) still violates BCNF.
 - Decompose into: (B,C), (C,D) and (C,A).
 - Any other alternatives?

 - Is the decomposition lossless-join?
 - Is the decomposition dependency-preserving?
- What about a 3NF decomposition?

♦ Example 2.2

- $R=(A,B,C,D), F=\{AB\rightarrow C, AB\rightarrow D, C\rightarrow A, D\rightarrow B\}.$
- Decompose *R* into a set of BCNF relations.

- All candidate keys: AB, AD, BC, CD.
- Decompose into (B,C,D) and (C,A).
- \bullet D→B violates BCNF in (B,C,D).
- ♦ Decompose into (D,B), (C,D), (C,A).
- Is the decomposition dependency-preserving?
- Any other alternatives?
 - \bullet D→B violates BCNF: Decompose into (A,C,D) and (D,B).
 - \bullet C \rightarrow A violates BCNF in (A,C,D): Decompose into (C,D), (C,A), (D,B).
- Could there be different BCNF decompositions?

♦ Example 3

♦ R = (A,B,C,D,E,F), $F = \{A \rightarrow BCD, BC \rightarrow DE, B \rightarrow D, D \rightarrow A\}$. Decompose R into a set of 3NF relations.

- Find the minimal cover:
 - ♦ Single attributes: $A \rightarrow B$, $A \rightarrow C$, $A \rightarrow D$, $BC \rightarrow D$, $BC \rightarrow E$, $B \rightarrow D$, $D \rightarrow A$.
 - Minimize left side:
 - \bullet BC→D: *closure*(B)={ABCDE}, C is redundant.
 - \bullet BC→E: *closure*(B)={ABCDE}, C is redundant.
 - \bullet Results: A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow D, B \rightarrow E, D \rightarrow A.
 - Eliminate FD redundancy:
 - \land A→B: *closure**(A)={ACD}, not redundant.
 - \land A \rightarrow C: *closure**(A)={ABD}, not redundant.
 - \land A→D: *closure**(A)={ABCDE}, redundant.
 - \bullet B→D: *closure**(B)={BE}, not redundant.
 - \bullet B→E: *closure**(B)={ABCD}, not redundant.
 - \bullet D→A: *closure**(D)={D}, not redundant.

♦ Example 3

 \bullet R=(A,B,C,D,E,F), F={A→BCD, BC→DE, B→D, D→A}. Decompose R into a set of 3NF relations.

- ♦ The minimal cover: $A \rightarrow B$, $A \rightarrow C$, $B \rightarrow D$, $B \rightarrow E$, $D \rightarrow A$.
- Find all the candidate keys:
 - F must be part of the key.
 - $closure(A) = \{ABCDE\}, closure(B) = \{ABCDE\}, closure(D) = \{ABCDE\}.$
 - C and E alone or together can't determine any other attributes.
 - All the candidate keys: AF, BF, DF.
- ♦ The 3NF decomposition:
 - **♦** (A,B,C).
 - **(**B,D,E).
 - **♦** (D,A).
 - **♦** (A,F).
- Is the decomposition lossless-join?
- Is the decomposition dependency-preserving?

Review

♦ Review Session

- Sunday Dec. 8th, 6-8pm. Phelps 3526.
- Discuss problems in past exams. Q&A.
- Return HW 1-4.

♦ TA Evaluation

- Your inputs are important for improving my teaching skills and quality!
- Written comments are highly appreciated!
 - Please use pen for written comments.
 - If you don't have written comments, please don't write ANYTHING (including name) on the written comment sheet.

♦ Q&A