CMPSC 174A/174N Fundamentals of Database System

Relational Algebra

Discussion Session Friday, 9:00am-9:50am Zexi Huang

Schedule

- Example
 - Sailors and Boats
- Exercise
 - Pilots and Airplanes

• Consider the schemas for the sailors and boats example:

- Sailors(<u>sid</u>: <u>integer</u>, sname: string, rating: integer, age: real)
- Boats(<u>bid</u>: <u>integer</u>, bname: string, color: string)
- Reserves(sid: integer, bid: integer, day: date)

sid	sname	rating	age
22	Dustin	7	45
29	Brutus	1	33
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35
64	Horatio	7	35
71	Zorba	10	16
74	Horatio	9	35
85	Art	3	25.5
95	Bob	3	63.5

bid	name	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Boats

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

Sailors

Reserves

- Consider the schemas for the sailors and boats example:
 - Sailors(<u>sid</u>: <u>integer</u>, sname: string)
 - Boats(<u>bid</u>: <u>integer</u>, bname: string, color: string)
 - Reserves(sid: integer, bid: integer, day: date)
- Q1: Find the names of all sailors.
 - $\pi_{sname}(Sailors)$

- Consider the schemas for the sailors and boats example:
 - Sailors(<u>sid</u>: <u>integer</u>, sname: string)
 - Boats(bid: integer, bname: string, color: string)
 - Reserves(sid: integer, bid: integer, day: date)
- Q2: Find the names of the sailors who have reserved at least one boat.
 - $\pi_{sname}(Sailors \bowtie Reserves)$

- Consider the schemas for the sailors and boats example:
 - Sailors(<u>sid: integer</u>, sname: string)
 - Boats(bid: integer, bname: string, color: string)
 - Reserves(sid: integer, bid: integer, day: date)
- Q3: Find the names of the sailors who have reserved at least two boats.
 - \bullet $\rho(ReservationPairs, Reserves \times Reserves)$
 - $\rho((1 \rightarrow sid1, 2 \rightarrow bid1, 4 \rightarrow sid2, 5 \rightarrow bid2), ReservationPairs))$
 - $\rho\left(RequestedSailors, \pi_{sid1}\sigma_{(sid1=sid2)\land(bid1\neq bid2)}(ReservationPairs)\right)$
 - $\rho((1 \rightarrow sid), RequestedSailors)$
 - $\pi_{sname}(RequestedSailors \bowtie Sailors)$

- Consider the schemas for the sailors and boats example:
 - Sailors(<u>sid: integer</u>, sname: string)
 - Boats(bid: integer, bname: string, color: string)
 - Reserves(<u>sid</u>: <u>integer</u>, <u>bid</u>: <u>integer</u>, <u>day</u>: <u>date</u>)
- Q3: Find the names of the sailors who have reserved at least two boats.
 - $\rho(R1, Reserves)$

 - $\phi(RequestedSailors, \pi_{R1.sid}(\sigma_{(R1.sid=R2.sid)\land(R1.bid\neq R2.bid)}R1 \times R2))$
 - $\pi_{sname}(RequestedSailors \bowtie Sailors)$
 - Sailors reserving at least three boats?

• Consider the schemas for the sailors and boats example:

- Sailors(<u>sid: integer</u>, sname: string)
- Boats(bid: integer, bname: string, color: string)
- Reserves(<u>sid</u>: <u>integer</u>, <u>bid</u>: <u>integer</u>, <u>day</u>: <u>date</u>)

• Q4: Find the names of the sailors who have reserved all boats.

- $\rho(RequestedSailors, \pi_{sid,bid}(Reserves) \div \pi_{bid}(Boats))$
- $\qquad \qquad \rho(RequestedSailors, \pi_{sid}(Reserves) \pi_{sid}\left(\pi_{sid}(Reserves) \times \pi_{bid}(Boats) \pi_{sid,bid}(Reserves)\right))$
- $\pi_{sname}(RequestedSailors \bowtie Sailors)$
- All red boats?
- \bullet $\pi_{sname}((\pi_{sid,bid}(Reserves) \div \pi_{bid}\sigma_{color='red'}(Boats)) \bowtie Sailors)$

- Consider the schemas for the sailors and boats example:
 - Sailors(<u>sid</u>: <u>integer</u>, sname: string)
 - Boats(bid: integer, bname: string, color: string)
 - Reserves(<u>sid</u>: <u>integer</u>, <u>bid</u>: <u>integer</u>, <u>day</u>: <u>date</u>)
- Q5: Find the names of the sailors who have not reserved boats.

 - $\pi_{sname}(RequestedSailors \bowtie Sailors)$
 - Not reserved boats named 'Marine'?
 - \bullet $\rho(RequestedSailors, \pi_{sid}(Sailors) \pi_{sid}(Sailors \bowtie Reserves \bowtie (\sigma_{bname='Marine'}(Boats))))$
 - $\pi_{sname}(RequestedSailors \bowtie Sailors)$

- Ex 4.5: Consider the schemas for the pilots and airplanes:
 - Flights(<u>flno</u>: integer, from: string, to: string, distance: real, departs: time, arrives: time)
 - Aircraft(<u>aid: integer</u>, aname: string, cruisingrange: real)
 - Employees(eid: integer, ename: string, salary: real)
 - Certified(eid: integer, aid: integer)
- Q1: Find the names of pilots certified for some Boeing aircraft.
 - $\pi_{ename}(Employees \bowtie Certified \bowtie (\sigma_{aname='Boeing'}(Aircraft))$
 - $\pi_{ename}(\sigma_{aname='Boeing'}(Employees \bowtie Certified \bowtie Aircraft))$

- Ex 4.5: Consider the schemas for the pilots and airplanes:
 - Flights(<u>flno: integer</u>, from: string, to: string, distance: real, departs: time, arrives: time)
 - ♦ Aircraft(<u>aid</u>: <u>integer</u>, aname: string, cruisingrange: real)
 - Employees(eid: integer, ename: string, salary: real)
 - Certified(eid: integer, aid: integer)
- Q2: Find the names of all aircraft that can be used on non-stop flights from Los Angeles to Tokyo.

 - $\pi_{aname}(\sigma_{cruisingrange>distance}(Aircraft \times LAtoTokyo))$
 - Can we do a natural join here?
 - \land $\pi_{aname}(Aircraft \bowtie_{cruisingrange>distance} LAtoTokyo)$

- Ex 4.5: Consider the schemas for the pilots and airplanes:
 - Flights(<u>flno: integer</u>, from: string, to: string, distance: real, departs: time, arrives: time)
 - ♦ Aircraft(<u>aid</u>: <u>integer</u>, aname: string, cruisingrange: real)
 - Employees(<u>eid</u>: <u>integer</u>, ename: string, salary: real)
 - Certified(eid: integer, aid: integer)
- Q3: Find the names of pilots who can operate planes with a range greater than 3,000 miles but are not certified on any Boeing aircraft.
 - $\rho(Pilots3000, \pi_{eid}(Certified \bowtie (\sigma_{cruisingrange>3000}Aircraft)))$
 - $\rho(PilotsBoeing, \pi_{eid}(Certified \bowtie (\sigma_{aname='Boeing'}Aircraft)))$
 - $\pi_{aname}((Pilots3000 PilotsBoeing) \bowtie Employees)$
 - Any other solutions?

• Ex 4.5: Consider the schemas for the pilots and airplanes:

- Flights(<u>flno: integer</u>, from: string, to: string, distance: real, departs: time, arrives: time)
- ♦ Aircraft(<u>aid</u>: <u>integer</u>, aname: string, cruisingrange: real)
- Employees(eid: integer, ename: string, salary: real)
- Certified(eid: integer, aid: integer)

• Q4: Find eids of employees with the highest salary.

- $\rho(EmployeePairs(1 \rightarrow eid1, 3 \rightarrow salary1, 4 \rightarrow eid2, 6 \rightarrow salary2), Employees \times Employees)$
- \bullet $\rho(EmployeeLowSalary(1 \rightarrow eid), \pi_{eid1}(\sigma_{salary1 < salary2}EmployeePairs))$
- $\pi_{eid}(Employees) EmployeeLowSalary$
- Employees with second highest salary?
- ▶ In SQL we will use aggregation operator **MAX**.

• Ex 4.5: Consider the schemas for the pilots and airplanes:

- Flights(<u>flno: integer</u>, from: string, to: string, distance: real, departs: time, arrives: time)
- ♦ Aircraft(<u>aid</u>: <u>integer</u>, aname: string, cruisingrange: real)
- ♦ Employees(<u>eid</u>: <u>integer</u>, ename: string, salary: real)
- Certified(eid: integer, aid: integer)

• Q5: Find eids of employees who are certified for exactly three aircraft.

- ♦ $\rho(Employee3(1 \rightarrow eid1, 2 \rightarrow aid1, 3 \rightarrow eid2, 4 \rightarrow aid2, 5 \rightarrow eid3, 6 \rightarrow aid3)$, Certified × Certified)
- $\qquad \qquad \rho(EmployeeG3(1 \rightarrow eid), \pi_{eid1}(\sigma_{(eid1=eid2) \land (eid2=eid3) \land (aid1 \neq aid2) \land (aid2 \neq aid3) \land (aid1 \neq aid3)} Employee3))$
- Similarly, we can find *Employee4* and *EmployeeG4*.

- Ex 4.5: Consider the schemas for the pilots and airplanes:
 - Flights(<u>flno: integer</u>, from: string, to: string, distance: real, departs: time, arrives: time)
 - ♦ Aircraft(<u>aid</u>: <u>integer</u>, aname: string, cruisingrange: real)
 - Employees(eid: integer, ename: string, salary: real)
 - Certified(eid: integer, aid: integer)
- Q6: Find the eids of employees who are certified for the largest number of aircraft.
 - We can't do it with relational algebra. In SQL we will use aggregation operator **COUNT**.
- Q7: Find total amount paid to employees as salaries.
 - We can't do it with relational algebra. In SQL we will use aggregation operator **SUM**.