CMPSC 174A /174N
Fundamentals of Database System

Relational Calculus

Discussion Session
Friday, 9:00am-9:50am
Zexi Huang

Schedule

¢ General approach

¢ Example
Sailors and Boats

¢ Exercise
Pilots and Airplanes

General Approach

¢ General approach to translate statements into relational calculus:

Translate the statements into relational algebra.

¢ Hopefully you also prefer relational algebra to relational calculus.

¢ Remember the tricks (e.g., finding highest salary, finding exact three boats).

Translate the relational algebra into relational calculus.

¢ Make sure all variables except those appear on the left of the bar are bound.

RUS
RNS
R-S

U';:R

RxS

Ta; Ay R

(X e X)) [ROX S ey X)) V S(X s X))
(X1, e X) | R(Xps e X)) A S(X X))
(X7 e X0) [ROXT ooy X)) A 2S(X s X))} R-S=RNS
{0, X)) [ROy, x) A @7
where F’ = FI[;| [}/
{0 wees X Vs wves Vi) | ROX1 s X)) AS(Y 1, v Vi)
VG) [g, - g ROy, X0

Reduce the translation result into simpler equivalent forms, if you like.

Sailors and Boats

¢ Consider the schemas for the sailors and boats example:

Sailors(sid: integer, sname: string)

Boats(bid: integer, bname: string, color: string)

Reserves(sid: integer, bid: integer, day: date)

¢ QI: Find the names of all boats.
Tpname (Boats)
{{Bname)|3Bid3Color({Bname, Bid, Color) € Boats)}
{(Bname)|3Bid, Color ({(Bname, Bid, Color) € Boats)}
{{Bname)|3Color, Bid({(Bname, Bid, Color) € Boats)}
{{Bname)|3(Bname, Bid, Color) € Boats}, don’t suggest.

Sailors and Boats

¢ Consider the schemas for the sailors and boats example:

Sailors(sid: integer, sname: string)

Boats(bid: integer, bname: string, color: string)

Reserves(sid: integer, bid: integer, day: date)

¢ Q2: Find the names of the sailors who have reserved at least one boat.
T ename (Sailors X Reserves), Of MenameOsidi=sidz (Sailors X Reserves).
{{Sname)| ...}
{(Sname)|3Sid1({Sid1, Sname) € Sailors ...)}
{{(Sname)|3Sid1((Sid1, Sname) € Sailors A 3Sid23Bid3aDay({Sid2, Bid, Day) € Reserves ...))}
{(Sname)|3Sid1((Sid1, Sname) € Sailors A 3Sid23Bid3aDay({(Sid2, Bid, Day) € Reserves A Sid1 = Sid2))}

Sailors and Boats

¢ Consider the schemas for the sailors and boats example:

Sailors(sid: integer, sname: string)

Boats(bid: integer, bname: string, color: string)

Reserves(sid: integer, bid: integer, day: date)

¢ Q2: Find the names of the sailors who have reserved at least one boat.
{(Sname)|3Sid1((Sid1, Sname) € Sailors A 3Sid23Bid3aDay({(Sid2, Bid, Day) € Reserves A Sid1 = Sid2))}
{(Sname)|3Sid1((Sid1, Sname) € Sailors A 3Sid2,Bid, Day({Sid2, Bid, Day) € Reserves A Sid1 = Sid2))}
{(Sname)|3Sid((Sid, Sname) € Sailors A ABid, Day({Sid, Bid, Day) € Reserves))}
{(Sname)|3Sid, Bid, Day({Sid, Sname) € Sailors A (Sid, Bid, Day) € Reserves)}, don’t suggest.
{(Sname)|3Sid, Bid, Day({Sid, Sname) € Sailors) A (Sid, Bid, Day) € Reserves}, wrong.

Sailors and Boats

¢ Consider the schemas for the sailors and boats example:

Sailors(sid: integer, sname: string)

Boats(bid: integer, bname: string, color: string)

Reserves(sid: integer, bid: integer, day: date)

¢ Q3: Find the names of the sailors who have reserved at least two boats.

T sname (Sailors X O (sig1=sid2)A(bid1=bid2) (Reservesl X ReservesZ))
{{(Sname)|3Sid0((Sid0, Sname) € Sailors ...)}

{(Sname) EISidO((SidO, Sname) € Sailors A 3Sid13Bid13Day1({Sid1, Bid1, Day1l) € Reserves ...))}

{{Sname) ASid0 ((SidO, Sname) € Sailors A EISidlEIBidlEIDayl((Sidl, Bid1, Dayl) € Reserves A
3Sid23Bid23Day2({Sid2, Bid2, Day2) € Reserves ...)))}

{{Sname) ASid0 ((SidO, Sname) € Sailors A EISidlEIBidlEIDayl((Sidl, Bid1,Dayl) € Reserves A\
ASid23Bid23Day2({Sid2, Bid2, Day2) € Reserves A Sid1 = Sid2 A Bid1 + Bid2 A Sid0 = Sidl)))}

Sailors and Boats

¢ Consider the schemas for the sailors and boats example:
Sailors(sid: integer, sname: string)
Boats(bid: integer, bname: string, color: string)

Reserves(sid: integer, bid: integer, day: date)

¢ Q3: Find the names of the sailors who have reserved at least two boats.
{{Sname) 35id0 ((SidO, Sname) € Sailors A EISidlEIBidEIDay((Sidl, Bid1,Dayl) € Reserves A\
3Sid23Bid3aDay((Sid2, Bid2,Day2) € Reserves A Sid1l = Sid2 A Bid1 # Bid2 A Sid0 = Sidl))))

{{(Sname) 3ASid ((Sid, Sname) € Sailors A ABid]1, Dayl((Sid, Bid1,Dayl) € Reserves A
3Bid2, Day2((Sid, Bid2, Day2) € Reserves A Bidl # Bid2))) !

{{Sname) 3Sid, Bid1, Bid2, Day1, Day2({Sid, Sname) € Sailors A (Sid, Bid1,Day1) € Reserve A
(Sid, Bid2,Day2) € Reserves A Bidl # Bid2)}

Sailors and Boats

¢ Consider the schemas for the sailors and boats example:

Sailors(sid: integer, sname: string)

Boats(bid: integer, bname: string, color: string)

Reserves(sid: integer, bid: integer, day: date)

¢ Q4: Find the names of the sailors who have not reserved boats.
T ename (Sailors — Mgiq sname(Sailors Reserves)) R-§ XLy e X)) | RO e, X)) A S (X, X))

{{Sname)|3Sid((Sid, Sname) € Sailors ...)}

{{(Sname)|3Sid((Sid, Sname) € Sailors A ~({Sid, Sname) € Sailors ...))}

{(Sname)|3Sid({Sid, Sname) € Sailors A =({Sid, Sname) € Sailors A ABid, Day({Sid, Bid, Day) € Reserves)))}
Let p = (Sid, Sname) € Sailors,q = 3ABid, Day({Sid, Bid, Day) € Reserves, we have {{Sname)|3Sid(p A ~(p A q))}
Recallp A=(pAq) =pA(=pV-q)=(@A-p)V(PA-q) =pA-q

{(Sname)|3Sid((Sid, Sname) € Sailors A =3Bid, Day({Sid, Bid, Day) € Reserves))}

Find the names of sailors such that there doesn’t exist any corresponding records in reservation table.
{(Sname)|3Sid((Sid, Sname) € Sailors AVBid, Day({Sid, Bid, Day) & Reserves))}

Sailors and Boats

¢ Consider the schemas for the sailors and boats example:

Sailors(sid: integer, sname: string)

Boats(bid: integer, bname: string, color: string)

Reserves(sid: integer, bid: integer, day: date)

¢ Q5: Find the names of the sailors who have reserved all boats.

T sname (Sailors X Tsiq pig (Reserves) + mpiqg (Boats))

{{Sname)|3Sid((Sid, Sname) € Sailors ...)}

{(Sname)| ... AVBid, Bname, Color((Bid, Bname, Color) € Boats = 3Day((Bid, Sid, Day) € Reserves)))}
Find the name of sailors such that for any boat, there exist a corresponding record between the sailor and the
boat in reservation table.

VBid, Bname, Color((Bid, Bname, Color) € Boats) is always false unless there 1s only one record in Boats.

~ bid name color Bi1d={102,103}, Bname= {Interlake, Clipper},Color={red,green}
102 Interlake red All possible combination of variables: (102, Interlake, red), (102, Interlake,
103 Clipper green green), (102, Clipper, red), (102, Clipper, green), (103, Interlake, red), (103,
Interlake, green), (103, Clipper, red), (103, Clipper, red)

Sailors and Boats

¢ Consider the schemas for the sailors and boats example:

Sailors(sid: integer, sname: string)

Boats(bid: integer, bname: string, color: string)

Reserves(sid: integer, bid: integer, day: date)

¢ Q5: Find the names of the sailors who have reserved all boats.

T sname (Sailors X Tsiq pig (Reserves) + mpiqg (Boats))

{{Sname)| ... AVBid, Bname, Color((Bid, Bname, Color) € Boats = 3Day((Bid, Sid, Day) € Reserves)))}
Recallp > q=-pVqg

{{Sname)| ... AVBid, Bname, Color((Bid, Bname, Color) & Boats V ADay((Bid, Sid, Day) € Reserves)))}

Find the name of sailors such that for any boat, either the boat doesn’t exist in boat table (always false), or
there exist a corresponding record between the sailor and the boat in reservation table.

{(Sname)| ... AVBid, Bname, Color(3Day((Bid, Sid, Day) € Reserves)))}, what are Bname and Color?
{{Sname)| ...AVBid (ADay((Bid, Sid, Day) € Reserves)))}

Find the name of sailors such that for any Bid, there exist a corresponding record between the sailor and the
Bid 1n reservation table.

Sailors and Boats

¢ Consider the schemas for the sailors and boats example:

Sailors(sid: integer, sname: string)

Boats(bid: integer, bname: string, color: string)

Reserves(sid: integer, bid: integer, day: date)

¢ Q5: Find the names of the sailors who have reserved all boats.
All red boats?

T sname (Sailors X Trsiq pig (Reserves) + ﬂbid(acozor=’red’30at5))

{(Sname)| ... AVBid, Bname, Color(((Bid, Bname, Color) € Boats A Color =' red") = 3Day ...))}
{(Sname)| ... AV Boats(Bid, Bname, Color)(Color =' red’ = 3ADay((Bid, Sid, Day) € Reserves)))}
{{Sname)| ... AVBid, Bname((Bid, Bname, 'red’) € Boats = dDay((Bid, Sid, Day) € Reserves)))}

Find the name of sailors such that for any red boat, there exist a corresponding record between the sailor
and the boat in reservation table.

Pilots and Airplanes

¢ Ex4.5: Consider the schemas for the pilots and airplanes:

Flights(flno: integer, from: string, to: string, distance: real, departs: time, arrives: time)

Aircraft(aid: integer, aname: string, cruisingrange: real)

Employees(eid: integer, ename: string, salary: real)

Certified(eid: integer, aid: integer)

¢ QI: Find the names of pilots certified for some Boeing aircraft.

Tename (Employees ™ Certified ™ (0 gngme='poeing’ (Aircraft))

{{Ename) |3Eid1, Salary ((Eidl, Ename, Salary) € Employees N\ EIEidZ,AidZ((EidZ,AidZ) €

Certified A AAid1, Aname, Cruisingrange((Aid1, Aname, Cruisingrange) € Aircraft A Eid1 = Eid2 A
Aid1 = Aid2 A Aname =’ Boeing’))) }

{{Ename) |3Eid, Salary ((Eid, Ename, Salary) € Employees N\ EIAid((Eid,Aid) € Certified N
ACruisingrange({Aid,' Boeing', Cruisingrange) € Aircraft))) }

Pilots and Airplanes

¢ Ex4.5: Consider the schemas for the pilots and airplanes:
Flights(flno: integer, from: string, to: string, distance: real, departs: time, arrives: time)

Aircraft(aid: integer, aname: string, cruisingrange: real)

Employees(eid: integer, ename: string, salary: real)

Certified(eid: integer, aid: integer)

¢ Q2: Find the names of all aircraft that can be used on non-stop flights from Los Angeles to
Tokyo.

Taname (Gcruisingrange>distance (Aircraft X G(fr0m=’Los Angeleg’)/\(to=’Tokyo’)Flights))

{{(Aname) |34id, Cruisingrange({Aid, Aname, Cruisingrange) € Aircraft A
dFlno, From,To, Distance, Departs, Arrives({(Flno, From, To, Distance, Departs, Arrives) € Flights N\
ACruisingrange > Distance A From =' Los Angeles' ATo =' Tokyo"))}

{(Aname) |34id, Cruisingrange({Aid, Aname, Cruisingrange) € Aircraft A
dFIno, Distance, Departs, Arrives({(Flno," Los Angeles', Tokyo', Distance, Departs, Arrives) €
Flights A ACruisingrange > Distance))}

Pilots and Airplanes

¢ Ex4.5: Consider the schemas for the pilots and airplanes:

Flights(flno: integer, from: string, to: string, distance: real, departs: time, arrives: time)

Aircraft(aid: integer, aname: string, cruisingrange: real)

Employees(eid: integer, ename: string, salary: real)

Certified(eid: integer, aid: integer)

¢ Q3: Find eids of employees with the highest salary.

Tename (Employees - 7Teidl,ename1,salaryl (Usalary1<salary2Employee~91 X EmployeeSZ))

{(Eid) |3Ename0, Salary0 ((Eid, Ename0, Salary0) € Employees A
—3Fid1, Enamel,Salaryl((Eidl,Enamel,Salaryl) € Employees A

AEid2, Ename2,Salary2({Eid2, Ename2,Salary2) € Employees A Eid = Eid1 A Salaryl < SalaryZ))) }

{(Eid) |3Enamel, Salary1({Eid, Enamel, Salary1l) € Employees A

pA-(pAq)=pA—q

—3Eid2, Ename2, Salary2({(Eid2, Ename2, Salary2) € Employees A Salaryl < Salary?2))}

{(Eid) |[3Enamel, Salaryl((Eid, Enamel, Salaryl) € Employees A

-(pAgQ)=—pV-q=p=>-q

VEid2, Ename2, Salary2({Eid2, Ename2, Salary2) € Employees = Salaryl = Salary2))}

Pilots and Airplanes

¢ Ex4.5: Consider the schemas for the pilots and airplanes:
Flights(flno: integer, from: string, to: string, distance: real, departs: time, arrives: time)

Aircraft(aid: integer, aname: string, cruisingrange: real)

Employees(eid: integer, ename: string, salary: real)
Certified(eid: integer, aid: integer)

¢ Q4: Find the names of pilots who can operate planes with a range greater than 3,000 miles but are
not certified on any Boeing aircraft.

Mename (Employees > (Certified (O-cruisingrange>3000Aircraft) N (Certified > (O-aname:t’Boeing’Aircraft))))

Wrong! Certified M (0 3ngme=’poeing’ Aircraft) means pilots who are certified on some non-Boeing aircraft.
Mename (Employees > ((Certified > (Ucruisingrange>3000‘4ircraft) — (Certified (Uaname=’Boeing’Aircraft))))

{(Ename) |3Eid, Salary ((Eid, Ename, Salary) € Employees A 3Aid1((Eid, Aid1) € Certified N

JAnamel, Cruisingrangel({(Aid1, Anamel, Cruisingrangel) € Aircraft A Cruisingrange > 3000)) A
—34id2((Eid, Aid2) € Certified N AAname2, Cruisingrange2((Aid2, Aname?2, Cruisingrange?2) € Aircraft A

Aname2 =' Boeing’)))}

Pilots and Airplanes

¢ Ex4.5: Consider the schemas for the pilots and airplanes:

Flights(flno: integer, from: string, to: string, distance: real, departs: time, arrives: time)

Aircraft(aid: integer, aname: string, cruisingrange: real)

Employees(eid: integer, ename: string, salary: real)

Certified(eid: integer, aid: integer)

¢ Q5: Find the eids of employees who are certified for the largest number of aircraft.

We can’t do it with relational calculus.

¢ Q6: Find total amount paid to employees as salaries.

We can’t do it with relational calculus.

