CMPSC 174A/174N Fundamentals of Database System

Functional Dependencies and Candidate Keys

Discussion Session Friday, 9:00am-9:50am Zexi Huang

Schedule

- Inferring Functional Dependencies
 - General Algorithm
 - Examples
- Finding Candidate Keys
 - General Algorithm
 - Examples

Problem

- ♦ For a relation R and a set of functional dependencies F, infer whether a given FD $f=X \rightarrow Y$ holds.
- ► Example: R = (A,B,C), $F = \{A \rightarrow B, B \rightarrow C\}$. Does $f = A \rightarrow C$ hold?

♦ Algorithm

- Find attribute closure of the attributes on the left of the arrow X.
 - *closure*=X.
 - \bullet Repeat until there is no change:{If there is an FD U \rightarrow V where U is a subset of *closure*, add V to *closure*}.
- \bullet If the attributes on the right of the arrow, Y is a subset of *closure*, then f holds and otherwise not.

♦ Is there an FD?

- Reflexivity: If $Y \subseteq X$, then $X \to Y$
- Augmentation: If $X \rightarrow Y$, then $XZ \rightarrow YZ$ for any Z
- Transitivity: If $X \to Y$ and $Y \to Z$, then $X \to Z$
- Union: If $X \to Y$ and $X \to Z$, then $X \to YZ$
- Decomposition: If $X \to YZ$, then $X \to Y$ and $X \to Z$

♦ Example 1.1

- $R = (A,B,C,D,E), F = \{AB \rightarrow C, CD \rightarrow E, DE \rightarrow B\}.$
- ♦ Does f=CD→BE hold?

- *closure*=CD.
- **OD→E**, *closure=closure*+E=CDE.
- DE→B, *closure=closure*+B=BCDE.
- ♦ Since BE is a subset of BCDE, f=CD→BE holds.
- What about $f=CD \rightarrow A$?

♦ Example 1.2

- $R = (A,B,C,D,E), F = \{AB \rightarrow C, CD \rightarrow E, DE \rightarrow B\}.$
- b Does f=ABD→CE hold?

- *closure*=ABD.
- ◆ AB→C, closure=closure+C=ABCD.
- **♦** CD→E, *closure=closure*+E=ABCDE.
- Since CE is a subset of ABCDE, f=ABD→CE holds.
- Is ABD a superkey?

♦ Example 2.1

- $R = (A,B,C,D,E), F = \{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A, AE \rightarrow D\}.$
- ♦ Does $f=E \rightarrow CD$ hold?

- *closure*=E.
- \bullet E \rightarrow A, closure=closure+A=AE.
- \land A \rightarrow BC, closure=closure+BC=ABCE.
- ◆ AE→D, closure=closure+D=ABCDE.
- ♦ Since CD is a subset of ABCDE, $f=E\rightarrow CD$ holds.
- Is E a candidate key?

♦ Example 2.2

- $R = (A,B,C,D,E), F = \{A \rightarrow BC, CD \rightarrow E, B \rightarrow D, E \rightarrow A, AE \rightarrow D\}.$
- ♦ Does $f=A \rightarrow DE$ hold?

- *closure*=*A*.
- \land A \rightarrow BC, closure=closure+BC=ABC.
- \bullet B→D, *closure=closure*+D=ABCD.
- **♦** CD→E, *closure=closure*+E=ABCDE.
- ♦ Since DE is a subset of ABCDE, $f=A \rightarrow DE$ holds.
- Is A a candidate key?

Finding Candidate Keys

Problem

- \bullet For a relation R and a set of functional dependencies F, find all of its candidate keys.
- ► Example: R = (A,B,C), $F = \{A \rightarrow B, B \rightarrow C\}$. What is the candidate key?

♦ Algorithm

- For every subset of all attributes, find its attribute closure.
- A set of attributes is a candidate key if
 - Its attribute closure contains all the attributes. (It is a superkey)
 - None of its proper subsets' attribute closures contain all the attributes. (It is minimal)

• Faster Computation

- Start from single attributes.
- Increase the size of attribute set only after checking all attribute sets of previous size.
- Once an attribute set is found to be a candidate key, all of its proper supersets can't be candidate keys.

Finding Candidate Keys

• Example 3

- $R=(A,B,C,D), F=\{AB \rightarrow C, C \rightarrow D, D \rightarrow A\}.$
- Find all of its candidate keys.

- \bullet A: closure(A)=A
- **▶** B: *closure*(B)=B.
- \bullet C: C \rightarrow D, D \rightarrow A, closure(C)=ACD.
- D: D \rightarrow A, closure(D)=AD.
- \bullet AB: AB→C, C→D, *closure*(AB)=ABCD.
- \bullet AC: C \rightarrow D, closure(AC)=ACD.
- ♦ AD: *closure*(AD)=AD.
- \bullet BC: C→D, D→A, *closure*(BC)=ABCD.
- \bullet BD: D→A, AB→C, *closure*(BD)=ABCD.
- \bullet CD: D→A, *closure*(CD)=ACD.
- Can we stop here?

Finding Candidate Keys

♦ Example 4

- $R = (A,B,C,D,E,F,G), F = \{AB \rightarrow F, AD \rightarrow E, F \rightarrow G\}.$
- Is ABCD a candidate key?

- Attribute closure of ABCD:
 - **♦** *closure*=ABCD.
 - **♦** AB→F, *closure=closure*+F=ABCDF.
 - \bullet F→G, *closure=closure*+G=ABCDFG.
 - **♦** AD→E, *closure=closure*+E=ABCDEFG.
- Attribute closures of subsets:
 - \bullet A, B, C, D: closure(A)=A, closure(B)=B, closure(C)=C, closure(D)=D.
 - ♦ AB, AD: *closure*(AB)=ABFG, *closure*(AD)=ADE.
 - ♦ AC, BC, BD, CD: closure(AC)=AC, closure(BC)=BC, closure(BD)=BD, closure(CD)=CD.
 - ◆ ABC, ACD: closure(ABC)=closure(AB)+C=ABCFG, closure(ACD)= closure(AD)+C=ACDE.
 - ♦ ABD: *closure*(ABD)=*closure*(AB)+*closure*(AD)=ABDEFG.
 - ▶ BCD: closure(BCD)=BCD.

Summary

♦ Summary

- We learnt how to infer FDs and find the keys of a given relation by computing attribute closures.
- ♦ Inferring FDs and finding keys are the cornerstones for determining the level of normal forms for relations.

♦ TA Evaluation

- Your inputs are important for improving my teaching skills and quality!
- Written comments are highly appreciated!
 - Please use pen for written comments.
 - If you don't have written comments, please don't write ANYTHING (including name) on the written comment sheet.

♦ Q&A