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Abstract

Spectral analysis is an important application of digital signal processing. Here, we
present a digital spectrum analysis scheme that clearly identifies the frequency compo-
nents of a linear combination of sinusoids with relatively close frequencies but distinct
amplitudes. In an effort to obtain the best resolution as well as saving computational
efforts, the choices of the type and length of window function and length of DFT are
discussed in details and a special method by avoiding spectrum leakage is highlighted.

1 Introduction

Determining in the discrete-time domain the frequency contents of a continuous-time
signal, more commonly known as spectral analysis, is widely used in signal procssing and
analysis. The rationale is that it is very common for information to be encoded in the sinu-
soids that form a signal, no matter whether it is naturally occurring or created by human. In
this case, the shape of the time domain waveform is of little importance, while the frequency,
phase and amplitude of the component sinusoids are of interest. The general procedure for
spectral analysis is shown in Figure 1.
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Figure 1: Block diagram of spectral analysis.

Here, we simulate the process of spectral analysis with MATLAB for a signal composed
of sinusoids with relatively close frequencies but distinct amplitudes. As we will see later, for
such a signal, the type and length of the window function as well as the length of DFT in the
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procedure is of great significance to the final results, as the sinusoids with small amplitudes
can be easily submerged in the side-lobes of sinusoids with much bigger amplitudes.

The remainder of this report is organized as follows: In the following section, we illustrate
the procedure of spectral analysis step by step. Section 3 presents the numerical experiments
for a specific signal. Finally, we give a short discussion and conclude in Section 4.

2 Problem Formulation

2.1 Anti-aliasing Filter, Sampling and Analog-to-Digital Converter

Before a real-life analog filter can be processed by a digital spectrum analyzer, it must
be converted to discrete form. Anti-aliasing filter, sampling module and analog-to-digital
converter are used for that purposes. Since we focus on computer-based simulation of the
process, the signal is considered without noise and what we need to ensure is the sampling
frequency, which follows Nyquist-Shannon sampling theorem [1]:

fs > 2fH (1)

where fs denotes the sampling frequency and fH is the highest frequency that exist in original
signal xa(t).

The output of these modules is the discretized signal x[n], which is ready for further
digital processing.

2.2 Windowing

Theoretically speaking, x[n] can now be transformed into its frequency domain and
the spectrum can be readily available now. However, in practice, several considerations
discourage us from doing so:

• Computational capability constrains. The real-life signal can be infinitely long. Finding
the DFT of such signal is computationally impossible.

• Memory storage constrains. For a very long signal, the spatial cost for storaging the
complete set of data is overwhelming.

• Real-time requirements. For an incessant signal, often, the spectrum of interest is a
short period of it. Instead of waiting for the whole signal to be transmitted, we need
real-time spectrum of it.

Windowing is a method to solve these problems. By multiplying the original signal x[n]
with a causal and finite-length window function w[n],

w[n] =

{
ws[n], 0 6 n 6M − 1

0, otherwise
(2)

we have
xw[n] = x[n]w[n] (3)
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which is also finite-length and causal. Of course, its DTFT,

Xw(ejω) =
1

2π

∫ π

−π
X(ejθ)W (ej(ω−θ))ejθdθ 6= X(ejω) (4)

as W (ejω) can’t be perfectly rectangular. To illustrate, some of the common windon functions
and their gain responses are shown in Figure 2.
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(a) Gain Response of Rectangular Window
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(b) Gain Response of Hann Window
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(c) Gain Response of Hamming Window
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(d) Gain Response of Blackman Window

Figure 2: Gain response of some common windows (M = 64). (a) Rectangular window
(ws[n] = 1). (b) Hann window (ws[n] = 0.5[1 + cos(π(n − 0.5M)/M)]). (c) Hamming
window (ws[n] = 0.54 + 0.46 cos(π(n − 0.5M)/M)). (d) Blackman window (ws[n] = 0.42 +
0.5 cos(π(n− 0.5M)/M) + 0.08 cos(2π(n− 0.5M)/M)).

Depending on the properties of the window functions choosen, the output spectrum may
distort to different extent. Since our objective is to identify all the frequency components
in a linear combination of sinusoids with close frequencies but distinct amplitudes, the key
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properties of interest are the main lobe width ∆ML and relative sidelobe level Asl. ∆ML is
critical to whether we could identify components with close frequencies. Large ∆ML leads
to component with a large amplitude surpresses its nearby weak component, thus a small
∆ML is desired. For Asl, the smaller it is, the more easier for the component with relatively
small amplitude to be detected. However, as shown in Table 1, for a fixed M , thses two
desires can’t be achieved at the same time, indicating a trade-off must be made. On the
other hand, for a certain type of window, incresing its length leads to smaller main lobe
width, but requires more computational efforts.

Table 1: Properties of some common windows.

Types of Window Main Lobe Width ∆ML Relative Sidelobe Level Asl

Rectangular 4π/M 13.3dB
Hann 8π/M 31.5dB

Hamming 8π/M 42.7dB
Blackman 12π/M 58.1dB

Specially, if the signal under consideration only consists of several sinusoids signals with
frequencies rational numbers, whose ideal frequency response are pulses, their sidelobes can
be completely surpressed if there is no spectrum leakage (see next subsection). Under this
circumstance, rectangular window is far superior to other windows since it doesn’t distort
the signal in time domain, resulting the ideal pulse frequency responses.

2.3 Discrete Fourier Transform

After appropriate windowing, xw[n] is ready to be to tranformed into its frequency
domain. DSP modules implements this by using FFT (Fast Fourier Transform, [2]) or other
popular algorithms like Goertzel’s [3]. No matter what methods are used, the length of the
FFT N is of great importance. Distortion or misrepresentation can happen due to spectrum
leakage and picket fence effect of inapproriate choice of length.

In general, longer length leads to better results since it can cover more points in frequency
domain and has higher possibility of identifying peak but more computational efforts.

As mentioned in previous subsection, for signal consisting of only rational-valued fre-
quency sinusoids, avoiding the spectrum leakage directly leads to total surpression of side-
lobes, thus identifying the frequency components without additional computational efforts.

To be specific, consider an sampled sinusoid with rational frequency f0 = a
b
,

s[n] = sin(
2πf0
fs

n) = sin(
2πa

bfs
n), 0 6 n 6M − 1 (5)

Its period is given by

P = b× numerator of
fs
a

after reduction (6)

Since DFT of a signal can be viewed as the evaluation of DFS for the periodic form (with
period N) of that signal, by choosing

N = kP (7)
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The frequency response would become an ideal pulse since the periodic form of s[n], sp[n], is

sp[n] = sin(
2πf0
fs

n),−∞ 6 n 6 +∞ (8)

Recall that if sidelobes exist, we need to increse M in order to decrease the main lobe
width. But in this case, N can be surprisingly small and M is only required to be no less
than N . Therefore a huge amount of computational efforts can be saved.

3 Numerical Experiments

3.1 Problem and Enviroment

In numerical experiments, the signal under consideration is

x(t) = 10 sin (2π × 64t) + sin(2π × 250
1

3
t) + 20 sin (2π × 256t)

+3 sin (2π × 260t) + 10 sin (2π × 512t) (9)

which is composed with five frequency components at 64Hz, 2501
3
Hz, 256Hz, 260Hz, 512Hz,

with respective amplitudes 10, 1, 20, 3, 10. The challenge is to correctly identify the 2501
3
Hz,

256Hz and 260Hz components. Their frequencies are close while their amplitudes, 1, 20, 3
are distinct.

The simulation environment for the whole process is MATLAB 9.0.0.341360 (R2016a),
and all sources codes used in this simulation and listed in the appendix are of that syntax.
This includes the spectrum analyzer given window type, window length and DFT length
SpectrumAnalyzer.m and several other auxiliary functions.

3.2 Sampling

Since the highest frequency component in x(t) is 512Hz,

fs > 1024Hz (10)

Here, fs = 1200Hz is arbitrarily choosen for simplicity. The sampled signal x[n] is

x[n] = 10 sin(
8π

75
n) + sin(

751π

1800
n) + 20 sin(

32π

75
n) + 3 sin(

13π

30
n) + 10 sin(

64π

75
n) (11)

3.3 Avoiding Spectrum Leakage

Noting that x[n] is composed of sinusoids with rational-valued frequencies, we consider
the method of avoiding spectrum leakage with rectangular window and M = N for sake of
computational efforts. Denote the five sinusoids in Equation 11 as x1[n], x2[n], x3[n], x4[n]
and x5[n] respectively. Their periods are computed as

P1 = 75, P2 = 3600, P3 = 75, P4 = 60, P5 = 75 (12)
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and the period for the signal

P = LCM{P1, P2, P3, P4, P5} = 3600 (13)

An naive idea is to choose the length of DFT N = 3600. In this case, the spectrum
leakage of the whole signal would be avoided, resulting ideal pulse responses for all frequency
components, as shown in Figure 3.
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Figure 3: Frequency spectrum for xw[n] with rectangular window. M = N = 3600.

However, with such big values for M and N , other window functions also yields accept-
able results as show in Figure 4.

Therefore, to show superiority of the avoiding spectrum leakage method, we must try to
shorten the length. If we loosen our restrict on periodicity, using

N = P ′ = LCM{P1, P3, P4, P5} = 300 (14)
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(a) Frequency Spectrum of x
w
[n] with Hann Window. M=N=3600
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(b) Frequency Spectrum of x
w
[n] with Hamming Window. M=N=3600
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(c) Frequency Spectrum of x
w
[n] with Blackman Window. M=N=3600

Figure 4: Frequency spectrum for xw[n] with (a) Hann window, (b) Hamming window, and
(c) Blackman window. M = N = 3600.
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although x2[n] would be nonperiodic, the effect of its sidelobe is limited as it has the smallest
amplitude compared to other component. The result is shown in Figure 5. As explained,
only x2[n] introduces its sidelobe due to spectrum leakage. And it is unnecessary to argue
that the peak of x2[n] may arise from the sidelobe of other components since there is no such
thing at all. Another observation that further confirms the successful detection is that the
amplitudes of the two stems near that of x3[n], are of a ratio approximately 1 : 3, which is
consistent with x2[n] vs. x4[n] in Equation 11.
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Figure 5: Frequency spectrum for xw[n] with rectangular window. M = N = 300.

This time, other window functions face complete failures in resolving x2[n], x3[n] and
x4[n], as shown in Figure 6. Their window lengths are not sufficiently big, resulting in full
concealment of x2[n] and x4[n].

A more ambitious idea is to let

N = P3 = 75 (15)
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(a) Frequency Spectrum of x
w
[n] with Hann Window. M=N=300
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(b) Frequency Spectrum of x
w
[n] with Hamming Window. M=N=300
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(c) Frequency Spectrum of x
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[n] with Blackman Window. M=N=300

Figure 6: Frequency spectrum for xw[n] with (a) Hann window, (b) Hamming window, and
(c) Blackman window. M = N = 300.
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which only avoid the spectrum leakage of x3[n] (as well as x1[n] and x5[n], but they are
of little importance as to the concealment of x2[n] and x4[n]). The results are undesirable,
however. Since there is no guarantee for spectrum leakage avoidance of x2[n] and x4[n],
picket fence effect comes in as limted DFT samples are unable to detect the mainlobe peak.
In addition, sidelobes of x2[n] and x4[n] would cover each other, resulting in aliasing spectrum
and concealment for both, althouth x3[n] renders no influence on them at all. It’s the same
case when M = N = 150. Both cases are illustrated in Figure 7.
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(a) Frequency Spectrum of x
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[n] with Rectangular Window. M=N=75
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(b) Frequency Spectrum of x
w
[n] with Rectangular Window. M=N=150

Figure 7: Frequency spectrum for xw[n] with rectangular window. (a) M = N = 75, (b)
M = N = 150.

Therefore, for the signal given in Equation 9, rectangular window with M = N = 300 is
the best option consiering both resolution and computational costs.
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3.4 General Case

In practice, the exact frequency of each component may be a long float number. Under
such circumstance, perfect spectrum avoidance is unavailable (the period P can be enormous).
We simulate this process by letting N not equal to any multiple of P1, P2, P3, P4 or P5.
The test-and-check process is tedious and neglected here. The final test result is that the
rectangular window with M = N = 580 may be a threshold between clear dectection with
right amplitude ratio and right frequency location and failure. The result is shown in Figure 8,
with comparision to other windows under same condition.
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(b) Frequency Spectrum of x
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(c) Frequency Spectrum of x
w
[n] with Hamming Window. M=580 N=580
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(d) Frequency Spectrum of x
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[n] with Blackman Window. M=580 N=580

Figure 8: Frequency spectrum for xw[n] with (a) Rectangular window, (b) Hann window,
(c) Hamming window, and (d) Blackman window. M = N = 580.
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4 Concluding Remarks

In this report, we present a digital spectrum analysis scheme that clearly identifies the
frequency components of a linear combination of sinusoids with relatively close frequencies but
distinct amplitudes. For rational-valued frequency components, a special method, spectrum
leakage avoidance, is introduced, which to a huge extent, saves computational efforts. Real-
life general case is also discussed. The whole project is insightful for newcomers in the field
of signal processing.
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A Appendix

A.1 Main Function: Frequency Analyzer

• FrequencyAnalyzer.m.

1 %{
2 FrequencyAnalyzer.m
3 Draw the frequency spectrum of the given signal, with different

parameters
4 of windows and DFT.
5 Zexi Huang
6 Dec.22 2016
7 %}
8 function FrequencyAnalyzer(windowType,M,N)
9 %windowType: type of the window choosen, ’R’ for Rectangular, ’N’ for

10 %haNn, ’M’ for haMming, ’B’ for Blackman.
11 %M: length of the window.
12 %N: length of DFT.
13 %f0: number of frequency components detected.
14 %f: detected frequency.
15

16 %Generate the sampled signal.
17 n=0:1:M−1;
18 x=10∗sin(2∗pi∗64/1200∗n)+sin(2∗pi∗(250)/1200∗n)+20∗sin(2∗pi∗256/1200∗n)

+3∗sin(2∗pi∗260/1200∗n)+10∗sin(2∗pi∗512/1200∗n);
19

20 %Generate the window function.
21 switch windowType
22 case ’R’
23 w=rectwin(M);
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24 case ’N’
25 w=hann(M);
26 case ’M’
27 w=hamming(M);
28 case ’B’
29 w=blackman(M);
30 end
31

32 %The windowed signal.
33 x w=x.∗w’;
34 X W=fft(x w,N)/(N/2);
35 X W=abs(X W);
36 omega=0:2∗pi/N:2∗pi∗(1−1/N);
37

38 %Draw the figure for results.
39 stem(omega,X W);
40 xlim([0 pi]);
41 xlabel(’Digital Radian Frequency (rad/sample)’);
42 ylabel(’Amplitude’);

A.2 Auxiliary Functions

• AvoidingLeakageCompareFigure.m.

1 %{
2 AvoidingLeakageCompareFigure.m
3 Draw figures for the avoiding spectrum leakage method with comparison.
4 Zexi Huang
5 Dec.22 2016
6 %}
7 function AvoidingLeakageCompareFigure(M)
8 %M: length of DFT and window function.
9

10 subplot(3,1,1);
11 FrequencyAnalyzer(’N’,M,M);
12 title([’(a) Frequency Spectrum of x w[n] with Hann Window. M=N=’,num2str(

M)]);
13

14 subplot(3,1,2);
15 FrequencyAnalyzer(’M’,M,M);
16 title([’(b) Frequency Spectrum of x w[n] with Hamming Window. M=N=’,

num2str(M)]);
17

18 subplot(3,1,3);
19 FrequencyAnalyzer(’B’,M,M);
20 title([’(c) Frequency Spectrum of x w[n] with Blackman Window. M=N=’,

num2str(M)]);

• AvoidingLeakageFigure.m.

1 %{
2 AvoidingLeakageFigure.m
3 Draw figures for the avoiding spectrum leakage method.
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4 Zexi Huang
5 Dec.22 2016
6 %}
7 function AvoidingLeakageFigure(M)
8 %M: length of DFT and window function.
9

10 FrequencyAnalyzer(’R’,M,M);
11 title([’Frequency Spectrum of x w[n] with Rectangular Window. M=N=’,

num2str(M)]);

• AvoidingLeakageFigureTwo.m.

1 %{
2 AvoidingLeakageFigureTwo.m
3 Draw figures for the avoiding spectrum leakage method for special
4 comparision.
5 Zexi Huang
6 Dec.22 2016
7 %}
8 function AvoidingLeakageFigureTwo
9

10 subplot(2,1,1);
11 FrequencyAnalyzer(’R’,75,75);
12 title(’(a) Frequency Spectrum of x w[n] with Rectangular Window. M=N=75’)

;
13

14 subplot(2,1,2);
15 FrequencyAnalyzer(’R’,150,150);
16 title(’(b) Frequency Spectrum of x w[n] with Rectangular Window. M=N=150’

);

• CompareDifferentParameters.m.

1 %{
2 CompareDifferentParameters.m
3 Draw figures for comparision of different windows, without considering

the
4 spectrum leakage avoidance.
5 Zexi Huang
6 Dec.23 2016
7 %}
8 function CompareDifferentParameters(M,N)
9 %M: length of the window.

10 %N: length of DFT.
11

12 subplot(2,2,1);
13 FrequencyAnalyzer(’R’,M,N);
14 xlim([1.2 1.5]);
15 title([’(a) Frequency Spectrum of x w[n] with Rectangular Window. M=’,

num2str(M),’ N=’,num2str(N)]);
16

17 subplot(2,2,2);
18 FrequencyAnalyzer(’N’,M,N);
19 xlim([1.2 1.5]);
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20 title([’(b) Frequency Spectrum of x w[n] with Hann Window. M=’,num2str(M)
,’ N=’,num2str(N)]);

21

22 subplot(2,2,3);
23 FrequencyAnalyzer(’M’,M,N);
24 xlim([1.2 1.5]);
25 title([’(c) Frequency Spectrum of x w[n] with Hamming Window. M=’,num2str

(M),’ N=’,num2str(N)]);
26

27 subplot(2,2,4);
28 FrequencyAnalyzer(’B’,M,N);
29 xlim([1.2 1.5]);
30 title([’(d) Frequency Spectrum of x w[n] with Blackman Window. M=’,

num2str(M),’ N=’,num2str(N)]);

• WindowDrawer.m.

1 %{
2 WindowDrawer.m
3 Drawing the spectrum of given window funcitons.
4 Zexi Huang
5 Dec.22 2016
6 %}
7 function WindowDrawer(M)
8 %M: Length of each window.
9

10 %Rectangular window.
11 subplot(2,2,1);
12 w=rectwin(M);
13 [W,omega]=freqz(w,1,8∗M);
14 W=abs(W);
15 W=W/max(W);
16 plot(omega,20∗log10(W));
17 axis([0 pi −100 0]);
18 title(’(a) Gain Response of Rectangular Window’);
19 xlabel(’Digital Radian Frequency (rad/sample)’);
20 ylabel(’Gain/dB’);
21

22 %Hann window.
23 subplot(2,2,2);
24 w=hann(M);
25 [W,omega]=freqz(w,1,8∗M);
26 W=abs(W);
27 W=W/max(W);
28 plot(omega,20∗log10(W));
29 axis([0 pi −100 0]);
30 title(’(b) Gain Response of Hann Window’);
31 xlabel(’Digital Radian Frequency (rad/sample)’);
32 ylabel(’Gain/dB’);
33

34 %Hamming window.
35 subplot(2,2,3);
36 w=hamming(M);
37 [W,omega]=freqz(w,1,8∗M);
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38 W=abs(W);
39 W=W/max(W);
40 plot(omega,20∗log10(W));
41 axis([0 pi −100 0]);
42 title(’(c) Gain Response of Hamming Window’);
43 xlabel(’Digital Radian Frequency (rad/sample)’);
44 ylabel(’Gain/dB’);
45

46 %Blackman window.
47 subplot(2,2,4);
48 w=blackman(M);
49 [W,omega]=freqz(w,1,8∗M);
50 W=abs(W);
51 W=W/max(W);
52 plot(omega,20∗log10(W));
53 axis([0 pi −100 0]);
54 title(’(d) Gain Response of Blackman Window’);
55 xlabel(’Digital Radian Frequency (rad/sample)’);
56 ylabel(’Gain/dB’);
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