
Digital Signal Processing Course Project
Generation and Detection of DTMF Signals

Zexi Huang∗

Yingcai Honors College

December 25, 2016

Abstract

Dual-tone multi-frequency (DTMF) signaling technology has reshaped the way of
dialing and soon became the industry standard for landline and mobile service after it
was invented. Here, we simulate the process of DTMF signal generation and detection
based on methods implemented in hardware DSP modules with MATLAB. In addition
to implementation of algorithms, a GUI is designed for better illustration.

1 Introduction

In telephone equipped with a keypad instead of a rotary dial, pressing of each buttons
generates a unique set of two-tone signals, i.e., DTMF signals, which are further processed
at the telephone central office to identify the key pressed by extracting the two frequency
components that compose them. These frequencies are choosen from two sets, the low-band
frequency group and the high-band one, and are standardized by ITU-T Recommendation
Q.23 [1], which is illustrated in Figure 1.

Here, we simulate the process of DTMF singal generation and detection with MATLAB
and also provide a GUI for better illustration of the rationale. The remainder of this report
is organized as follows: In the following section, we introduce the algorithms of DTMF
generation and detection in an hardware DSP module pespective. Section 3 presents the
numerical experiments and the GUI implementation. Finally, we give a short discussion and
conclude in Section 4.

2 Problem Formulation and Algorithms

As introduced before, each DTMF signal is represented as a sum of two frequency com-
ponents, that is

g(t) = [cos(2πfLt) + cos(2πfHt)]u(t) (1)

∗Correspondence should be addressed to Z. Huang. E-mail: Eitima@163.com. Student No. 2014030302014

1

1 2 3 A

4 5 6 B

7

*

8 9 C

D#0

High Group

1209 1336 1477 1633

697

770

852

941

Low
Group

Figure 1: The tone frequency assignments for DTMF signals.

and the sampled discrete signal could be expressed as

g[n] = [cos(
2πfL
fs

n) + cos(
2πfH
fs

n)]u[n] (2)

where fL and fH are frequencies from the low-band group and high-band respectively and fs
is the sampling frequency.

Our goals are:

• generate g[n] (samples of g(t)) given a specified key is pressed (fH and fL are deter-
mined) and

• identify the key pressed (determine fH and fL) given the singal g[n].

In addition, these objectives should be accomplished in a highly efficient manner so that
hardware DSP modules with limited resources can implement. The detailed algorithms for
implementation are illustrated in following subsections.

2.1 DTMF Signals Generation

To generate a DTMF signal, the fist step is to generate any cosine sequence given its
frequency. For a DSP module, a common and efficient method is to implement an IIR filter
with one of its poles located exactly in the unit circle, resulting an oscillation. The rationale
is explained as follows.

Consider a causal cosine sequence to be generated:

h[n] = cos(ω0n)u[n] (3)

2

Its z-transform H(z) is

H(z) =
1− [cosω0]z

−1

1− [2 cosω0]z−1 + z−2
(4)

Given ω0, the above expression specifies a second order IIR filter shown in Figure 2.

ݔ ݊

ଵିݖ	

൅

ଵିݖ	

02 cos
൅

1
൅

0cos

൅

൅

ݕ ݊

Figure 2: Block diagram of the digital oscillator.

By setting the input sequence x[n] = δ[n], the output y[n] = h[n] can be specified by
the following difference equation

h[n]− [2 cosω0]h[n− 1] + h[n− 2] = δ[n]− [cosω0]δ[n− 1] (5)

with its initial condition
h[−2] = h[−1] = 0 (6)

Now, after specifying ω0, h[n] can generated by recursively evaluating Equation 5.
The final DTMF singal g[n] is then computed by summing hL[n] and hH [n], the generated

cosine sequences when ω0 = 2πfL
fs

and ω0 = 2πfH
fs

.

2.2 DTMF Signals Detection

For a received DTMF signal g[n] as specified in Equation 2, the method to identify its
composed frequency component is, to analyze its frequency domain G(ejω),

G(ejω) =
1− [cos 2πfL

fs
]e−jω

1− [2 cos 2πfL
fs

]e−jω + e−2jω
+

1− [cos 2πfH
fs

]e−jω

1− [2 cos 2πfH
fs

]e−jω + e−2jω
(7)

the poles of which in [0, 2π] are

ω =
2πfL
fs

,
2πfH
fs

, 2π − 2πfL
fs

, 2π − 2πfH
fs

(8)

3

By finding these corresponding frequencies with peak values of G(ejω), the required
frequencies are determined and the key pressed is identified. To implement such an algorithm
in a DSP module, discrete Fourier transform G[k] = G(ejω)|ω=2πk/N is computed instead
of continuous function G(ejω). Although fast algorithms for computing DFT are readily
available in DSP, such as FFT, Goertzel’s algorithm [2] is often more attractive in this case
since only a few samples of DFT are required while FFT always computes all the DFT
samples. Thus here we use Goertzel’s algorithm to compute the required DFT of the DTMF
signals. The details are explained as follows.

Consider the DFT of the sequence g[n],

G[k] =
N−1∑
l=0

g[l]e−j
2π
N
kl (9)

Note
ej

2π
N
kN = 1 (10)

we can rewrite G[k] as

G[k] = ej
2π
N
kN

N−1∑
l=0

g[l]e−j
2π
N
kl =

N−1∑
l=0

g[l]ej
2π
N
k(N−l) (11)

Replacing N with n in the above expression, we could define a new sequence p[n] that is in
the form of a convolution,

pk[n] =
n−1∑
l=0

g[l]ej
2π
N
k(n−l) = ge[n] ∗ qk[n] (12)

where

ge[n] =

{
g[n], 0 6 n 6 N − 1

0, otherwise
(13)

and
qk[n] = ej

2π
N
knu[n] (14)

Then
G[k] = pk[n]|n=N (15)

Here, we note that Equation 12 also specifies a LTI system where the input is the
extended version of DTFT signal g[n] and the output at n = N is exactly the required DFT
G[k], with system transfer function

Qk(z) =
1

1− ej 2πN kz−1
(16)

or equivalently

Qk(z) =
1− e−j 2πN kz−1

1− 2 cos(2π
N
k)z−1 + z−2

(17)

4

݃௘ሾ݊ሿ

ଵିݖ	

൅

ଵିݖ	

22 cos()k
N


൅

1
൅

2j k
Ne




൅

൅

௞ሾ݊ሿݒ
௞ሾ݊ሿ݌

Figure 3: Block diagram of the system implementing Goertzel’s algorithm.

resulting in the realization shown in Figure 3. The respective difference equation is

vk[n] = ge[n] + 2 cos(
2πk

N
)vk[n− 1]− vk[n− 2] (18)

with its initial condition
vk[−2] = vk[−1] = 0 (19)

And the required DFT G[k] is computed by

G[k] = pk[N] = vk[N]− e−j
2π
N
kvk[N − 1] (20)

For DTMF signal, the magnitude of G[k] alone is enough to determine the frequencies
with peak values, thus we could compute

|G[k]|2 = v2k[N] + v2k[N − 1]− 2 cos(
2πk

N
)vk[N]vk[N − 1] (21)

considering both ge[n] and vk[n] are real sequences. Now we also see the reason why we adopt
Equation 17 instead of Equation 16 to implement the system: it requires less complex oper-
ations and in the end, finding |G[k]|2 by recursively computing Equation 20 and evaluating
Equation 21 involves no complex operations at all.

Finally, fH and fL are determined by finding the respective frequencies where the peak
values of |G[k]|2 are reached, or for implementation by a computer program, identifying the
local maxima of |G[k]|2.

5

3 Numerical Experiments and GUI Interaction

3.1 Parameters and Enviroment

Some numerical parameters used in simulation are specified here. First, as is common
in telephone services, the sampling frequency fs is chosen to be fs = 8kHz, and each DTMF
signal lasts t0 = 50ms in a time slot of 100ms. Therefore, n0 = t0 × fs = 400 samples are
required for each DTMF signal. Second, for antialising in frequency domain, N = n0 = 400
is used in the detection process.

The simulation environment for the whole process is MATLAB 9.0.0.341360 (R2016a),
and all sources codes used in this simulation and listed in the appendix are of that syntax.

3.2 DTMF Generation Results

CosineGenerator.m is the digital oscillator-based implementation of generating a cosine
sequence given its length and radian frequency. Then by calling it, DTMFGenerator.m
generates a DTMF sequence given the key pressed based on the mapping relation indicated
in Figure 1.

As an example, the time sequences generated when the input keys are ‘4’ and ‘#’ are
shown in Figure 4 and Figure 5, respectively. However, it’s hard to direct tell their expressions
in time domain as in Equation 1 from these figures.

0 5 10 15 20 25 30 35 40 45 50

Time (ms)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

A
m

p
lit

u
d

e

Generated DTMF Signal for Key '4'

Figure 4: DTMF signal for key ‘4’.

6

0 5 10 15 20 25 30 35 40 45 50

Time (ms)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

A
m

p
lit

u
d

e

Generated DTMF Signal for Key '#'

Figure 5: DTMF signal for key ‘#’.

3.3 DTMF Detection Results

Goertzel’s algorithm is first implemented in GoertzelDFT.m to computing DTFT sam-
ples of the received DTFM signal. Then, DTFTtoCTFT.m transfers DTFT to CTFT where
LocalMaximaIdentifier.m finds the local maxima of the sequence in frequency domain. By
calling these funcitons above, DTMFDetector.m maps these maxima in frequencies back to
the key pressed as indicated in Figure 1.

The intensity (square amplitude) of DTFT and CTFT for the received DTMF signals
when ‘4’ and ‘#’ are pressed are shown in Figure 6 and Figure 7 respectively. As is consistent
with Equation 8, four peaks exist in each DTFT figure in [0, 2π]. In CTFT figures, the
corresponding frequencies of DTMF signals are easily recognized.

3.4 GUI Design

For better interaction with possible users, a GUI is designed based on MATLAB GUIDE.
The main GUI function is gui.m and the function for GUI update is implemented in up-
date gui.m. The GUI layout is stored in gui.fig and is shown in Figure 8. When the user
left-click any of these 16 buttons, the respective DTMF signal will be generated by calling
DTMFGenerator.m. Then, its time-domain figure will be drawn in the figure box above. Af-
ter that, DTMFDetector.m begins working on the generated signal, showing the key identified
in the text box next to the ’Key Pressed’ box and plotting the respective CTFT intensity in
the figure box below. The results when the user click ‘2’ and ‘7’ are shown in Figure 9 and

7

0 1 2 3 4 5 6 7

Digital Radian Frequency (rad/sample)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

In
te

n
s
it
y

×104 (a) DTFT Intensity of the Received DTMF Signal for Key '4'

0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

In
te

n
s
it
y

×104 (b) CTFT Intensity of the Received DTMF Signal for Key '4'

Figure 6: Intensity of (a) DTFT and (b) CTFT for the received DTMF signals when ‘4’
is pressed.

0 1 2 3 4 5 6 7

Digital Radian Frequency (rad/sample)

0

0.5

1

1.5

2

2.5

3

3.5

4

In
te

n
s
it
y

×104 (a) DTFT Intensity of the Received DTMF Signal for Key '#'

0 500 1000 1500 2000 2500 3000 3500 4000

Frequency (Hz)

0

0.5

1

1.5

2

2.5

3

3.5

4

In
te

n
s
it
y

×104(b) CTFT Intensity of the Received DTMF Signal for Key '#'

Figure 7: Intensity of (a) DTFT and (b) CTFT for the received DTMF signals when ‘#’
is pressed.

8

Figure 10 respectively.

Figure 8: The GUI layout.

4 Concluding Remarks

In this report, we present generation and detection of DTMF signals using MATLAB.
The generation process is based on the digital oscillator method while for detection, Goertzel’s
algorithm, a highly efficient algorithm in this case, is used instead of FFT to obtain DFT
samples of the signal. In addition, a GUI presentation is designed to facilitate the illustration
of DTMF signals.

References

[1] International Telecommunication Union. Technical features of push-button telephone
sets, August 1988. Retrieved from http://www.itu.int/rec/T-REC-Q.23/en.

[2] Gerald Goertzel. An algorithm for the evaluation of finite trigonometric series. The
American Mathematical Monthly, 65(1):34–35, 1958.

9

http://www.itu.int/rec/T-REC-Q.23/en

Figure 9: The GUI presentation when ‘2’ is clicked.

Figure 10: The GUI presentation when ‘7’ is clicked.

10

A Appendix

A.1 Source Codes for DTMF Generation

• CosineGenerator.m.

1 %{
2 %Generating n0=400 samples of cosine sequence given digital radian

frequency w.
3 %Zexi Huang
4 %Dec. 14 2016
5 %}
6

7 function h=CosineGenerator(w,n0)
8 %h: output, n0=400 samples of the required cosine sequence.
9 %p: digital radian frequency of the cosine sequence.

10

11

12 C=cos(w);
13 %Store the constant.
14 h=zeros(n0,1)’;
15 %Initiate h.
16

17

18 h(1)=1;
19 %Note that it in fact computes h[0], that is, h[n]=h(n+1) since MATLAB
20 %don’t allow zero index.
21 h(2)=C;
22 %Initial condition computed from h(−2)=h(−1)=0
23

24 for ii=3:1:n0
25 h(ii)=2∗C∗h(ii−1)−h(ii−2);
26 end
27 %Loop implementation of recursive evaluation.
28

29 end

• DTMFGenerator.m.

1 %{
2 %Generating a DTMF sequence with specified key pressed based on digital
3 oscillator.
4 %Zexi Huang
5 %Dec. 14 2016
6 %}
7

8 function [x,t]=DTMFGenerator(key)
9 %key: input key.

10 %[x,t]: output respective DTMF sequence.
11

12 fs=8000;
13 n0=400;
14

15 %List required frequencies.

11

16 fl=[697, 770, 852, 941];
17 fh=[1209, 1336, 1477, 1633];
18

19 %Generate time stamps.
20 t=0:1/8:50−1/8;
21

22

23 %Establish mapping relations.
24 switch key
25 case ’1’
26 wl=fl(1);
27 wh=fh(1);
28 case ’2’
29 wl=fl(1);
30 wh=fh(2);
31 case ’3’
32 wl=fl(1);
33 wh=fh(3);
34 case ’A’
35 wl=fl(1);
36 wh=fh(4);
37 case ’4’
38 wl=fl(2);
39 wh=fh(1);
40 case ’5’
41 wl=fl(2);
42 wh=fh(2);
43 case ’6’
44 wl=fl(2);
45 wh=fh(3);
46 case ’B’
47 wl=fl(2);
48 wh=fh(4);
49 case ’7’
50 wl=fl(3);
51 wh=fh(1);
52 case ’8’
53 wl=fl(3);
54 wh=fh(2);
55 case ’9’
56 wl=fl(3);
57 wh=fh(3);
58 case ’C’
59 wl=fl(3);
60 wh=fh(4);
61 case ’∗’
62 wl=fl(4);
63 wh=fh(1);
64 case ’0’
65 wl=fl(4);
66 wh=fh(2);
67 case ’#’
68 wl=fl(4);
69 wh=fh(3);

12

70 case ’D’
71 wl=fl(4);
72 wh=fh(4);
73 end
74

75 wl=2∗pi∗wl/fs;
76 wh=2∗pi∗wh/fs;
77

78 %Calling digital oscillator based cosine generator.
79 x=CosineGenerator(wl,n0)+CosineGenerator(wh,n0);
80

81 sound(x,fs);
82 end

A.2 Source Codes for DTMF Detection

• GoertzelDFT.m.

1 %{
2 %Goertzel’s Algorithm to compute DFT for given sequence.
3 %Zexi Huang
4 %Dec. 14 2016
5 %}
6

7 function [X,w]=GoertzelDFT(x)
8 %[X,w]: output DTFT samples.
9 %x: input sequence.

10

11

12 %N: Number of samples.
13 N=400;
14

15 %Generate frequency stamps.
16 w=0:2∗pi/N:2∗pi∗(1−1/N);
17

18 %Initiate X.
19 X=zeros(N,1)’;
20

21 %Generate X[k].
22 for k=0:1:N−1
23 %Store the constant.
24 C=2∗cos(2∗pi∗k/N);
25 %Initiate vk.
26 vk=zeros(N+1,1)’;
27

28 %vk[0], vk[1] computed from vk[−2], vk[−1].
29 vk(1)=x(1);
30 vk(2)=x(2)+C∗vk(1);
31

32 for ii=3:1:N
33 vk(ii)=x(ii)+C∗vk(ii−1)−vk(ii−2);
34 end
35 vk(N+1)=C∗vk(N)−vk(N−1);

13

36 %In fact X(k).
37 X(k+1)=vk(N+1)ˆ2+vk(N)ˆ2−C∗vk(N+1)∗vk(N);
38 end

• DTFTtoCTFT.m.

1 %{
2 %Transfer DTFT back to CTFT samples for DTMF.
3 %Zexi Huang
4 %Dec. 14 2016
5 %}
6 function [X CT,w CT]=DTFTtoCTFT(X,w)
7 %[X,w]: DTFT of the DTMF signal.
8 %[X CT,w CT]: CTFT samples of the DTMF signal.
9

10 %Same amplitude domain.
11 X CT=X(1:200);
12

13 %Mapping digital radian frequency into analog frequency.
14 w CT=w(1:200);
15 w CT=w CT∗8000/(2∗pi);

• LocalMaximaIdentifier.m.

1 %{
2 %Finding local maxima for a given sequence.
3 %Zexi Huang
4 %Dec. 15 2016
5 %}
6 function [maxX,maxw]=LocalMaximaIdentifier(X,w)
7 %[X,w]: the sequence whose local maxima are to be identified.
8 %[maxX,maxw]: the output sets of local maximas.
9

10

11 N=length(X);
12 jj=1;
13

14 %Find local maxima accroding to its definition.
15 for ii=2:N−1
16 if X(ii)>X(ii−1) && X(ii)>X(ii+1)
17 maxX(jj)=X(ii);
18 maxw(jj)=w(ii);
19 jj=jj+1;
20 end
21 end

• DTMFDetector.m.

1 %{
2 %Identify the respective key for a given DTMF signal.
3 %Zexi Huang
4 %Dec. 15 2016
5 %}
6

14

7 function key=DTMFDetector(x,t)
8 %[x,t]: input DTMF sequence.
9 %key: the key pressed identified.

10

11 %Computing DTFT of the sequence based on Goertzel’s algorithm.
12 [X,w]=GoertzelDFT(x);
13 %Mapping DTFT to CTFT samples.
14 [X,w]=DTFTtoCTFT(X,w);
15 %Identify local maxima of the sequence.
16 [maxX,maxw]=LocalMaximaIdentifier(X,w);
17

18 %Identified fl and fh.
19 fl0=maxw(1);
20 fh0=maxw(2);
21

22 %fl and fh sets.
23 fl=[697, 770, 852, 941];
24 fh=[1209, 1336, 1477, 1633];
25

26 %Difference between identified fl, fh and fl, fh sets.
27 fl0=fl0∗ones(1,4);
28 fh0=fh0∗ones(1,4);
29 fl diff=abs(fl−fl0);
30 fh diff=abs(fh−fh0);
31

32 %Mapping identified frequency back to key pressed.
33 if min(fl diff)==fl diff(1)
34 if min(fh diff)==fh diff(1)
35 key=’1’;
36 elseif min(fh diff)==fh diff(2)
37 key=’2’;
38 elseif min(fh diff)==fh diff(3)
39 key=’3’;
40 elseif min(fh diff)==fh diff(4)
41 key=’A’;
42 end
43 elseif min(fl diff)==fl diff(2)
44 if min(fh diff)==fh diff(1)
45 key=’4’;
46 elseif min(fh diff)==fh diff(2)
47 key=’5’;
48 elseif min(fh diff)==fh diff(3)
49 key=’6’;
50 elseif min(fh diff)==fh diff(4)
51 key=’B’;
52 end
53 elseif min(fl diff)==fl diff(3)
54 if min(fh diff)==fh diff(1)
55 key=’7’;
56 elseif min(fh diff)==fh diff(2)
57 key=’8’;
58 elseif min(fh diff)==fh diff(3)
59 key=’9’;
60 elseif min(fh diff)==fh diff(4)

15

61 key=’C’;
62 end
63 elseif min(fl diff)==fl diff(4)
64 if min(fh diff)==fh diff(1)
65 key=’∗’;
66 elseif min(fh diff)==fh diff(2)
67 key=’0’;
68 elseif min(fh diff)==fh diff(3)
69 key=’#’;
70 elseif min(fh diff)==fh diff(4)
71 key=’D’;
72 end
73 end

A.3 Source Codes for GUI Design

• gui.m.

1

2 %{
3 %GUI main function for the GUI design for DTMF.
4 %Zexi Huang
5 %Dec. 16 2016
6 %}
7 function varargout = gui(varargin)
8 % GUI M−file for gui.fig
9 % GUI, by itself, creates a new GUI or raises the existing

10 % singleton∗.
11 %
12 % H = GUI returns the handle to a new GUI or the handle to
13 % the existing singleton∗.
14 %
15 % GUI(’CALLBACK’,hObject,eventData,handles,...) calls the local
16 % function named CALLBACK in GUI.M with the given input arguments.
17 %
18 % GUI(’Property’,’Value’,...) creates a new GUI or raises the
19 % existing singleton∗. Starting from the left, property value pairs

are
20 % applied to the GUI before gui OpeningFunction gets called. An
21 % unrecognized property name or invalid value makes property

application
22 % stop. All inputs are passed to gui OpeningFcn via varargin.
23 %
24 % ∗See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only

one
25 % instance to run (singleton)".
26 %
27 % See also: GUIDE, GUIDATA, GUIHANDLES
28

29 % Edit the above text to modify the response to help gui
30

31

32 % Begin initialization code − DO NOT EDIT

16

33 gui Singleton = 1;
34 gui State = struct(’gui Name’, mfilename, ...
35 ’gui Singleton’, gui Singleton, ...
36 ’gui OpeningFcn’, @gui OpeningFcn, ...
37 ’gui OutputFcn’, @gui OutputFcn, ...
38 ’gui LayoutFcn’, [] , ...
39 ’gui Callback’, []);
40 if nargin & isstr(varargin{1})
41 gui State.gui Callback = str2func(varargin{1});
42 end
43

44 if nargout
45 [varargout{1:nargout}] = gui mainfcn(gui State, varargin{:});
46 else
47 gui mainfcn(gui State, varargin{:});
48 end
49 % End initialization code − DO NOT EDIT
50

51

52 % −−− Executes just before gui is made visible.
53 function gui OpeningFcn(hObject, eventdata, handles, varargin)
54 % This function has no output args, see OutputFcn.
55 % hObject handle to figure
56 % eventdata reserved − to be defined in a future version of MATLAB
57 % handles structure with handles and user data (see GUIDATA)
58 % varargin command line arguments to gui (see VARARGIN)
59

60 % Choose default command line output for gui
61 handles.output = hObject;
62

63

64 % Update handles structure
65 guidata(hObject, handles);
66

67 % UIWAIT makes gui wait for user response (see UIRESUME)
68 % uiwait(handles.figure1);
69

70

71 % −−− Outputs from this function are returned to the command line.
72 function varargout = gui OutputFcn(hObject, eventdata, handles)
73 % varargout cell array for returning output args (see VARARGOUT);
74 % hObject handle to figure
75 % eventdata reserved − to be defined in a future version of MATLAB
76 % handles structure with handles and user data (see GUIDATA)
77

78 % Get default command line output from handles structure
79 varargout{1} = handles.output;
80

81

82 % −−− Executes on button press in b1.
83 function b1 Callback(hObject, eventdata, handles)
84 % hObject handle to b1 (see GCBO)
85 % eventdata reserved − to be defined in a future version of MATLAB
86 % handles structure with handles and user data (see GUIDATA)

17

87 [x,t]=DTMFGenerator(’1’);
88 key=’1’;
89 update gui
90

91 % −−− Executes on button press in b2.
92 function b2 Callback(hObject, eventdata, handles)
93 % hObject handle to b2 (see GCBO)
94 % eventdata reserved − to be defined in a future version of MATLAB
95 % handles structure with handles and user data (see GUIDATA)
96 [x,t]=DTMFGenerator(’2’);
97 key=’2’;
98 update gui
99

100 % −−− Executes on button press in b3.
101 function b3 Callback(hObject, eventdata, handles)
102 % hObject handle to b3 (see GCBO)
103 % eventdata reserved − to be defined in a future version of MATLAB
104 % handles structure with handles and user data (see GUIDATA)
105 [x,t]=DTMFGenerator(’3’);
106 key=’3’;
107 update gui
108 % −−− Executes on button press in b4.
109 function b4 Callback(hObject, eventdata, handles)
110 % hObject handle to b4 (see GCBO)
111 % eventdata reserved − to be defined in a future version of MATLAB
112 % handles structure with handles and user data (see GUIDATA)
113 [x,t]=DTMFGenerator(’4’);
114 key=’4’;
115 update gui
116 % −−− Executes on button press in b5.
117 function b5 Callback(hObject, eventdata, handles)
118 % hObject handle to b5 (see GCBO)
119 % eventdata reserved − to be defined in a future version of MATLAB
120 % handles structure with handles and user data (see GUIDATA)
121 [x,t]=DTMFGenerator(’5’);
122 key=’5’;
123 update gui
124 % −−− Executes on button press in b6.
125 function b6 Callback(hObject, eventdata, handles)
126 % hObject handle to b6 (see GCBO)
127 % eventdata reserved − to be defined in a future version of MATLAB
128 % handles structure with handles and user data (see GUIDATA)
129 [x,t]=DTMFGenerator(’6’);
130 key=’6’;
131 update gui
132 %−−− Executes on button press in b7.
133 function b7 Callback(hObject, eventdata, handles)
134 % hObject handle to b7 (see GCBO)
135 % eventdata reserved − to be defined in a future version of MATLAB
136 % handles structure with handles and user data (see GUIDATA)
137 [x,t]=DTMFGenerator(’7’);
138 key=’7’;
139 update gui
140

18

141 % −−− Executes on button press in b8.
142 function b8 Callback(hObject, eventdata, handles)
143 % hObject handle to b8 (see GCBO)
144 % eventdata reserved − to be defined in a future version of MATLAB
145 % handles structure with handles and user data (see GUIDATA)
146 [x,t]=DTMFGenerator(’8’);
147 key=’8’;
148 update gui
149

150 % −−− Executes on button press in b9.
151 function b9 Callback(hObject, eventdata, handles)
152 % hObject handle to b9 (see GCBO)
153 % eventdata reserved − to be defined in a future version of MATLAB
154 % handles structure with handles and user data (see GUIDATA)
155 [x,t]=DTMFGenerator(’9’);
156 key=’9’;
157 update gui
158

159 % −−− Executes on button press in ba.
160 function bstar Callback(hObject, eventdata, handles)
161 % hObject handle to bstar (see GCBO)
162 % eventdata reserved − to be defined in a future version of MATLAB
163 % handles structure with handles and user data (see GUIDATA)
164 [x,t]=DTMFGenerator(’∗’);
165 key=’∗’;
166 update gui
167

168 % −−− Executes on button press in b0.
169 function b0 Callback(hObject, eventdata, handles)
170 % hObject handle to b0 (see GCBO)
171 % eventdata reserved − to be defined in a future version of MATLAB
172 % handles structure with handles and user data (see GUIDATA)
173 [x,t]=DTMFGenerator(’0’);
174 key=’0’;
175 update gui
176

177 % −−− Executes on button press in bn.
178 function bcell Callback(hObject, eventdata, handles)
179 % hObject handle to bcell (see GCBO)
180 % eventdata reserved − to be defined in a future version of MATLAB
181 % handles structure with handles and user data (see GUIDATA)
182 [x,t]=DTMFGenerator(’#’);
183 key=’#’;
184 update gui
185

186 function bA Callback(hObject, eventdata, handles)
187 % hObject handle to bcell (see GCBO)
188 % eventdata reserved − to be defined in a future version of MATLAB
189 % handles structure with handles and user data (see GUIDATA)
190 [x,t]=DTMFGenerator(’A’);
191 key=’A’;
192 update gui
193

194 function bB Callback(hObject, eventdata, handles)

19

195 % hObject handle to bcell (see GCBO)
196 % eventdata reserved − to be defined in a future version of MATLAB
197 % handles structure with handles and user data (see GUIDATA)
198 [x,t]=DTMFGenerator(’B’);
199 key=’B’;
200 update gui
201

202 function bC Callback(hObject, eventdata, handles)
203 % hObject handle to bcell (see GCBO)
204 % eventdata reserved − to be defined in a future version of MATLAB
205 % handles structure with handles and user data (see GUIDATA)
206 [x,t]=DTMFGenerator(’C’);
207 key=’C’;
208 update gui
209

210 function bD Callback(hObject, eventdata, handles)
211 % hObject handle to bcell (see GCBO)
212 % eventdata reserved − to be defined in a future version of MATLAB
213 % handles structure with handles and user data (see GUIDATA)
214 [x,t]=DTMFGenerator(’D’);
215 key=’D’;
216 update gui
217

218

219 % −−− Executes on mouse press over axes background.
220 function fig1 ButtonDownFcn(hObject, eventdata, handles)
221 % hObject handle to fig1 (see GCBO)
222 % eventdata reserved − to be defined in a future version of MATLAB
223 % handles structure with handles and user data (see GUIDATA)
224

225

226

227

228 % −−− Executes during object creation, after setting all properties.
229 function EditPressed CreateFcn(hObject, eventdata, handles)
230 % hObject handle to EditPressed (see GCBO)
231 % eventdata reserved − to be defined in a future version of MATLAB
232 % handles empty − handles not created until after all CreateFcns

called
233

234 % Hint: edit controls usually have a white background on Windows.
235 % See ISPC and COMPUTER.
236 if ispc
237 set(hObject,’BackgroundColor’,’white’);
238 else
239 set(hObject,’BackgroundColor’,get(0,’defaultUicontrolBackgroundColor’

));
240 end
241

242

243

244 function EditPressed Callback(hObject, eventdata, handles)
245 % hObject handle to EditPressed (see GCBO)
246 % eventdata reserved − to be defined in a future version of MATLAB

20

247 % handles structure with handles and user data (see GUIDATA)
248

249 % Hints: get(hObject,’String’) returns contents of EditPressed as text
250 % str2double(get(hObject,’String’)) returns contents of

EditPressed as a double

• update gui.m.

1

2 %{
3 %GUI update for the GUI design for DTMF.
4 %Zexi Huang
5 %Dec. 16 2016
6 %}
7

8

9

10

11 % For Figure1
12

13 axes(handles.fig1);
14 PlotTimeDomain(x,t,key);
15

16 %For key pressed window.
17 keyPressed=DTMFDetector(x,t);
18 set(handles.EditPressed,’String’,keyPressed);
19

20 % For Figure2
21

22 axes(handles.fig2);
23 [X,w]=GoertzelDFT(x);
24 [X,w]=DTFTtoCTFT(X,w);
25

26 plot(w,X);
27 xlabel(’Frequency (Hz)’);
28 ylabel(’Intensity’);
29 title([’CTFT Intensity of the Received DTMF Signal for Key ’’’,keyPressed

,’’’’]);

• gui.fig. The generated m-file for the layout is to long (over 1000 lines) and thus is
omitted here.

21

	Introduction
	Problem Formulation and Algorithms
	DTMF Signals Generation
	DTMF Signals Detection

	Numerical Experiments and GUI Interaction
	Parameters and Enviroment
	DTMF Generation Results
	DTMF Detection Results
	GUI Design

	Concluding Remarks
	Appendix
	Source Codes for DTMF Generation
	Source Codes for DTMF Detection
	Source Codes for GUI Design

