Digital Signal Processing Course Project
Generation and Detection of DTMF Signals

Zexi Huang*
Yingcai Honors College

December 25, 2016

Abstract

Dual-tone multi-frequency (DTMF) signaling technology has reshaped the way of
dialing and soon became the industry standard for landline and mobile service after it
was invented. Here, we simulate the process of DTMF signal generation and detection
based on methods implemented in hardware DSP modules with MATLAB. In addition
to implementation of algorithms, a GUI is designed for better illustration.

1 Introduction

In telephone equipped with a keypad instead of a rotary dial, pressing of each buttons
generates a unique set of two-tone signals, i.e., DTMF signals, which are further processed
at the telephone central office to identify the key pressed by extracting the two frequency
components that compose them. These frequencies are choosen from two sets, the low-band
frequency group and the high-band one, and are standardized by I'TU-T Recommendation
Q.23 [1], which is illustrated in Figure 1.

Here, we simulate the process of DTMF singal generation and detection with MATLAB
and also provide a GUI for better illustration of the rationale. The remainder of this report
is organized as follows: In the following section, we introduce the algorithms of DTMF
generation and detection in an hardware DSP module pespective. Section 3 presents the
numerical experiments and the GUI implementation. Finally, we give a short discussion and
conclude in Section 4.

2 Problem Formulation and Algorithms

As introduced before, each DTMF signal is represented as a sum of two frequency com-
ponents, that is

g(t) = [cos(2m frt) + cos(2m fut)|u(t) (1)
*Correspondence should be addressed to Z. Huang. E-mail: Eitima@163.com. Student No. 2014030302014




High Group
1209 1336 1477 1633

| | |
697 1 2 3 A
| | | |
770 4 5 6 B
Low
Group
852 7 8 9 C
| | | |
941 * 0 # D
o

Figure 1: The tone frequency assignments for DTMF signals.

and the sampled discrete signal could be expressed as

2rf1, 27 fu
L )l ®

where f7, and fg are frequencies from the low-band group and high-band respectively and f;
is the sampling frequency.
Our goals are:

n) + cos(

gln] = [cos(

e generate g[n] (samples of ¢(t)) given a specified key is pressed (fy and f; are deter-
mined) and

e identify the key pressed (determine fy and f1) given the singal g[n].

In addition, these objectives should be accomplished in a highly efficient manner so that
hardware DSP modules with limited resources can implement. The detailed algorithms for
implementation are illustrated in following subsections.

2.1 DTMF Signals Generation

To generate a DTMF signal, the fist step is to generate any cosine sequence given its
frequency. For a DSP module, a common and efficient method is to implement an IIR filter
with one of its poles located exactly in the unit circle, resulting an oscillation. The rationale
is explained as follows.

Consider a causal cosine sequence to be generated:

hln] = cos(won)un| (3)



Its z-transform H(z) is
1

1 — [coswp)z~
H(z) =
(2) 1 —[2coswp|z=t 4 272

Given wy, the above expression specifies a second order IIR filter shown in Figure 2.

(D Ve SR
x[n] \"‘/ \‘l‘/ y[n]
.
2C0s w, —CO0S W,
O O
.
-1

6—/: I:

Figure 2: Block diagram of the digital oscillator.

By setting the input sequence z[n] = J[n], the output y[n] = h[n] can be specified by
the following difference equation

hin] — [2 coswplh[n — 1] + h[n — 2] = §[n] — [coswpo[n — 1] (5)

with its initial condition

h[=2] = h[-1] =0 (6)

Now, after specifying wy, h[n] can generated by recursively evaluating Equation 5.
The final DTMF singal g[n] is then computed by summing hy[n] and hy[n], the generated
_ 27fL — 2nfH

cosine sequences when wy = - and wy = 7
S S

2.2 DTMF Signals Detection

For a received DTMF signal g[n] as specified in Equation 2, the method to identify its
composed frequency component is, to analyze its frequency domain G(e/),

27 fr, 2 fy

g 1 — [cos =E]e™7 1 — [cos =t ]em
G(e”) = IR T Ty — (7)
1—[QCOST]6 W 4 e~ 2w 1—[2COST]6 Jw 4 e—2jw
the poles of which in [0, 27] are
2 2 2 2
W= 7TfL7 7TfH72ﬂ__ 7TfL727T_ T (8)
fs o fs [s [s



By finding these corresponding frequencies with peak values of G(e¥), the required
frequencies are determined and the key pressed is identified. To implement such an algorithm
in a DSP module, discrete Fourier transform G[k] = G(€/)|, =27/~ is computed instead
of continuous function G(e’*). Although fast algorithms for computing DFT are readily
available in DSP, such as FFT, Goertzel’s algorithm [2] is often more attractive in this case
since only a few samples of DFT are required while FFT always computes all the DFT
samples. Thus here we use Goertzel’s algorithm to compute the required DFT of the DTMF
signals. The details are explained as follows.

Consider the DFT of the sequence g[n],

N—1
GlK =D gllle 7 F (9)
=
Note ,
NN =1 (10)
we can rewrite G[k] as
N-1 N-1
GIk] = TNy " gllle TRM =y~ g[iJel FHND (11)
1=0 1=0

Replacing N with n in the above expression, we could define a new sequence p[n| that is in
the form of a convolution,

n—I1
peln) =D gllle? 0D = g.[n] = gi[n] (12)
1=0
where
gln,0<n< N -1
e - . 13
el { 0, otherwise (13)
and ,
qln] = ¥ ¥ uln] (14)
Then
Glk] = pr[n]ln=n (15)

Here, we note that Equation 12 also specifies a LTI system where the input is the
extended version of DTFT signal g[n] and the output at n = N is exactly the required DFT
G[k], with system transfer function

) Jp—— (16)

1 —elnkz-1

or equivalently
1— e IRkl

T 1- 2cos(3 k)21 4 272

Qr(2)



v
71
27k 27
<+ ‘ ZCOS(LT) _jJNk
) N ]
'y
z11
-1

Figure 3: Block diagram of the system implementing Goertzel’s algorithm.

resulting in the realization shown in Figure 3. The respective difference equation is
2k
vg[n] = ge[n] + 2 COS(T)vk[n — 1] —vgln — 2] (18)

with its initial condition
vp[—2] = v [-1] = 0 (19)

And the required DFT G[k]| is computed by
G[k] = pi[N] = ve[N] — e 7% Fu [N — 1] (20)

For DTMF signal, the magnitude of G[k] alone is enough to determine the frequencies
with peak values, thus we could compute

G = oIV] + 3N — 1) — 2cos(CRE ) N[N — 1 (1)

considering both g.[n] and vg[n| are real sequences. Now we also see the reason why we adopt
Equation 17 instead of Equation 16 to implement the system: it requires less complex oper-
ations and in the end, finding |G[k]|? by recursively computing Equation 20 and evaluating
Equation 21 involves no complex operations at all.

Finally, fg and f;, are determined by finding the respective frequencies where the peak
values of |G[k]|? are reached, or for implementation by a computer program, identifying the
local maxima of |G[k][?.



3 Numerical Experiments and GUI Interaction

3.1 Parameters and Enviroment

Some numerical parameters used in simulation are specified here. First, as is common
in telephone services, the sampling frequency f; is chosen to be f; = 8kHz, and each DTMF
signal lasts tg = 50ms in a time slot of 100ms. Therefore, ny = ty X fs = 400 samples are
required for each DTMF signal. Second, for antialising in frequency domain, N = ny = 400

is used in the detection process.
The simulation environment for the whole process is MATLAB 9.0.0.341360 (R2016a),
and all sources codes used in this simulation and listed in the appendix are of that syntax.

3.2 DTMF Generation Results

CosineGenerator.m is the digital oscillator-based implementation of generating a cosine
sequence given its length and radian frequency. Then by calling it, DTMFGenerator.m
generates a DTMF sequence given the key pressed based on the mapping relation indicated
in Figure 1.

As an example, the time sequences generated when the input keys are ‘4’ and ‘#’ are
shown in Figure 4 and Figure 5, respectively. However, it’s hard to direct tell their expressions
in time domain as in Equation 1 from these figures.

Generated DTMF Signal for Key '4’

1.5 b

05

Amplitude

-0.57

_2 L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50

Time (ms)

Figure 4: DTMF signal for key ‘4.



Generated DTMF Signal for Key '#'

Amplitude

-0.5 1

_2 L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50

Time (ms)

Figure 5: DTMF signal for key ‘#’.

3.3 DTMF Detection Results

Goertzel’s algorithm is first implemented in Goertzel DF'T.m to computing DTFT sam-
ples of the received DTFM signal. Then, DTFTtoCTFT.m transfers DTFT to CTFT where
LocalMazimaldentifier.m finds the local maxima of the sequence in frequency domain. By
calling these funcitons above, DTMF Detector.m maps these maxima in frequencies back to
the key pressed as indicated in Figure 1.

The intensity (square amplitude) of DTFT and CTFT for the received DTMF signals
when ‘4" and ‘#’ are pressed are shown in Figure 6 and Figure 7 respectively. As is consistent
with Equation 8, four peaks exist in each DTFT figure in [0,27]. In CTFT figures, the
corresponding frequencies of DTMF signals are easily recognized.

3.4 GUI Design

For better interaction with possible users, a GUI is designed based on MATLAB GUIDE.
The main GUI function is gui.m and the function for GUI update is implemented in up-
date_gui.m. The GUI layout is stored in gui.fig and is shown in Figure 8. When the user
left-click any of these 16 buttons, the respective DTMF signal will be generated by calling
DTMFGenerator.m. Then, its time-domain figure will be drawn in the figure box above. Af-
ter that, DTMF Detector.m begins working on the generated signal, showing the key identified
in the text box next to the 'Key Pressed’ box and plotting the respective CTFT intensity in
the figure box below. The results when the user click ‘2’ and ‘7’ are shown in Figure 9 and

7



o X 104 (a) I:?TFT Intenfity of !he‘Received F)TMF Sigr}al for Key‘ ‘4 B «10* (b) ‘CTFT Intgnsity of‘lhe Rece‘ived DTMF Signal‘ for Key ‘4

1.8 T 1.8 ’ 1
16 T 16 "‘ ‘ 1
141 b 141 ‘ q
12 T 12 1
2 2
2 2
s 'f 7 s 'f 1
< £
0.8 T 0.8 1
06 T 0.6 1
04F , 04F ‘ 1
02f , 02f J ‘ ‘ \ 1
o I A
| | \
ol JUJL ‘ ‘ ‘ WA 0 A AN ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 7 0 500 1000 1500 2000 2500 3000 3500 4000
Digital Radian Frequency (rad/sample) Frequency (Hz)

Figure 6: Intensity of (a) DTFT and (b) CTET for the received DTMF signals when ‘4’
is pressed.

4 «10%(a) DTFT Intensity of the Received DTMF Signal for Key '#' A 104(b) CTFT Intensity of the Received DTMF Signal for Key '#'
35 B 35 B
3 1 3r 1
25 B 251 B
2 =
2 2
s ?f | s 2 |
£ £
15 1 15[ 1
1 1 1 1
05 B 05 B
0 L L L L L L 0 L L J i L L L L
0 1 2 3 4 5 6 7 0 500 1000 1500 2000 2500 3000 3500 4000
Digital Radian Frequency (rad/sample) Frequency (Hz)

Figure 7: Intensity of (a) DTFT and (b) CTFT for the received DTMF signals when ‘#’
is pressed.



Figure 10 respectively.

DTMF Encoding and Decoding GUI
by Zexi Huang

B = E =
H EH E B
H B H B
H B & 5

Key Pressed 2

Figure 8: The GUI layout.

4 Concluding Remarks

In this report, we present generation and detection of DTMF signals using MATLAB.
The generation process is based on the digital oscillator method while for detection, Goertzel’s
algorithm, a highly efficient algorithm in this case, is used instead of FFT to obtain DFT
samples of the signal. In addition, a GUI presentation is designed to facilitate the illustration
of DTMF signals.

References

[1] International Telecommunication Union. Technical features of push-button telephone
sets, August 1988. Retrieved from http://www.itu.int/rec/T-REC-Q.23/en.

[2] Gerald Goertzel. An algorithm for the evaluation of finite trigonometric series. The
American Mathematical Monthly, 65(1):34-35, 1958.


http://www.itu.int/rec/T-REC-Q.23/en

DTMF Encoding and Decoding GUI
by Zexi Huang

o EE T
e [l (A
DIEITIY —eﬂw\fh'ur‘u,mmwu\ﬂ\nwwph\./w
o Mt Wi Il
HE e B JLWI‘H zz.mld”m mluwhli Mm
— J% —
Figure 9: The GUI presentation when ‘2’ is clicked.
DTMF Encoding and Decoding GUI _
it TN
4] 5| & & ‘%’ZW/MW‘W\M}‘LMMMMWM‘Mj
O
HEEBe p Us H “U ;c.L U A U ;5“;.

25 35
Time (ms)
* 0 # D
w104 CTFT Intensity of the Received DTMF Signal for Key '7"
25 T T T T T T T

-
21561 |
L R n
E|
o5

L L L 1 L
500 1000 1500 2000 2500 3000 3500 4000

Figure 10: The GUI presentation when ‘7’ is clicked.

10



A
Al

~

9
10
11
12
13

Appendix

Source Codes for DTMF Generation

CosineGenerator.m.

5{

%$Generating n0=400 samples of cosine sequence given digital radian
frequency w.

%$Zexi Huang

%$Dec. 14 2016

5}

function h=CosineGenerator (w,n0)
%$h: output, n0=400 samples of the required cosine sequence.
%p: digital radian frequency of the cosine sequence.

C=cos (w) ;

%$Store the constant.
h=zeros (n0,1)’;
$Initiate h.

h(1)=1;

%$Note that it in fact computes h[0], that is, h[n]=h(n+l) since MATLAB
%$don’t allow zero index.

h(2)=C;

$Initial condition computed from h(—2)=h(—-1)=0

for 1ii=3:1:n0
h(ii)=2*%Cxh (ii—1)—h (ii—2);

s end

$Loop implementation of recursive evaluation.

end

DTMFGenerator.m.
%{

%$Generating a DTMF sequence with specified key pressed based on digital
oscillator.

%$Zexi Huang

%$Dec. 14 2016

%}

function [x,t]=DTMFGenerator (key)
$key: input key.
%[x,t]: output respective DTMF sequence.

£s=8000;
n0=400;

5 $List required frequencies.

11



66
67
68

69

f1=[697, 770, 852, 941];
fh=[1209, 1336, 1477, 1633];

%$Generate time stamps.
t=0:1/8:50—-1/8;

$Establish mapping relations.

1+ switch key

case "1’
wl=f1l(1);
wh=fh (1) ;

case 2’
wl=fl(1l);
wh=fh (2);

case "3’
wl=f1l(1);
wh=fh (3);

case "A’
wl=f1l(1l);
wh=fh (4);

case "4’
wl=£f1l(2);
wh=fh (1) ;

case 5’
wl=f1l(2);
wh=fh (2);

case 6’
wl=£f1l(2);
wh=fh (3) ;

case B’
wl=f1l(2);
wh=fh (4);

case "7’
wl=£f1l(3);
wh=fh (1) ;

case '8’
wl=f1l(3);
wh=fh (2) ;

case 9’
wl=f1l(3);
wh=fh (3);

case 'C’
wl=£f1l(3);
wh=fh (4);

case " x’
wl=£f1l(4);
wh=fh (1) ;

case "0’
wl=f1l(4);
wh=fh (2) ;

case " #’
wl=£f1l(4);
wh=fh (3);

12



case D’
wl=f1l(4);
wh=fh (4) ;

end

wl=2*pixwl/fs;
wh=2*pixwh/fs;

%$Calling digital oscillator based cosine generator.
x=CosineGenerator (wl,n0)+CosineGenerator (wh, n0);

sound (x, £s) ;
end

Source Codes for DTMF Detection

Goertzel DFT.m.
5

%$Goertzel’s Algorithm to compute DFT for given sequence.
%$Zexi Huang

$Dec. 14 2016

%)

function [X,w]=GoertzelDFT (x)
$[X,w]: output DTFT samples.
%$x: input sequence.

%N: Number of samples.
N=400;

%$Generate frequency stamps.
w=0:2%pi1/N:2%xpi*x (1—1/N);

$Initiate X.
X=zeros (N,1)’;

$Generate X[k].

for k=0:1:N-1
%$Store the constant.
C=2x*cos (2%pi*xk/N) ;
$Initiate vk.
vk=zeros (N+1,1)’;

svk[0], vk[l] computed from vk[—2], vk[—1].
vk (1)=x(1);
vk (2)=x(2) +Cxvk (1) ;

for ii=3:1:N

vk (1i)=x(1ii)+Cxvk (ii—1)—vk (ii-2);
end
vk (N+1) =Cx*vk (N)—vk (N—1) ;

13



%$In fact X (k).
X (k+1)=vk (N+1) "24+vk (N) "2—Cx*xvk (N+1) *xvk (N) ;
end

DTFTtoCTFT.m.
5{

$Transfer DTFT back to CTFT samples for DTMF.
%$Zexi Huang

%$Dec. 14 2016

%}

function [X_CT,w_CT]=DTFTtoCTFT (X, w)

$[X,w]: DTFT of the DIMF signal.

[X.CT,w_CT]: CTFT samples of the DTMF signal.

o\° o

%$Same amplitude domain.
X_CT=X(1:200);

$Mapping digital radian frequency into analog frequency.

w_CT=w(1:200);
w_CT=w_CT*8000/ (2%pi) ;

LocalMaximaldentifier.m.

$Finding local maxima for a given sequence.
%$Zexi Huang
%$Dec. 15 2016

function [maxX,maxw]=LocalMaximaldentifier (X, w)

%$[X,w]: the sequence whose local maxima are to be identified.

[maxX,maxw] : the output sets of local maximas.

N=length (X) ;
ji=1;

$Find local maxima accroding to its definition.
for ii=2:N—-1
if X(1ii)>X(1i-1) && X (ii)>X(1ii+1)
maxX (jj) =X (ii);
maxw (jJj)=w(ii);
Jj3=33+1;
end
end

DTMFDetector.m.
A

$Identify the respective key for a given DTMF signal.
%$Zex1l Huang

$Dec. 15 2016

5}

14



7 function key=DTMFDetector (x,t)
8 $[x,t]: input DTMF sequence.
9 $key: the key pressed identified.

11 $Computing DTFT of the sequence based on Goertzel’s algorithm.
12 [X,w]=GoertzelDFT (Xx);

13 $Mapping DTFT to CTFT samples.

[X,w]=DTFTtoCTFT (X, w) ;

15 $Identify local maxima of the sequence.

16 [maxX, maxw]=LocalMaximaldentifier (X, w);

18 $Identified f1 and fh.
19 £10=maxw (1) ;
20 fhO=maxw (2) ;

22 $f1 and fh sets.
23 £1=[697, 770, 852, 941];
24 £h=[1209, 1336, 1477, 1633];

26 $Difference between identified f1, fh and f1l, fh sets.
27 £10=f10%ones (1,4);

28 fhO=fhOxones (1, 4);

20 f1 diff=abs (f1-£10);

30 fh_.diff=abs (fh—fh0);

32 $Mapping identified frequency back to key pressed.
33 1f min(fl.diff)==£f1.diff (1)

34 if min(fh.diff)==fh_diff (1)

35 key="1";

36 elseif min(fh_diff)==fh_diff (2)
37 key="2";

38 elseif min(fh_ diff)==fh_diff (3)
39 key='3";

40 elseif min(fh diff)==fh_diff (4)
41 key="A";

42 end

13 elseif min(fl.diff)==£f1_.diff (2)

44 if min(fh.diff)==fh_diff (1)

45 key="4";

46 elseif min(fh_ diff)==fh_diff (2)
47 key=’'5";

48 elseif min(fh_diff)==fh_diff (3)
49 key="6";

50 elseif min(fh diff)==fh_diff (4)
51 key="B’;

52 end

53 elseif min(fl.diff)==£f1_diff (3)

54 if min(fh.diff)==fh_diff (1)

55 key="7";

56 elseif min(fh diff)==fh_diff (2)
57 key='8";

58 elseif min(fh_diff)==fh_diff (3)
59 key="9";

60 elseif min(fh. diff)==fh_diff (4)

15



66
67
68
69
70

72
73

ot

o N >

o0 o0 o° A O O ° A° O O o° o°

10
11
12
13
14

16
17
18

19

20
21

key="C";
end
elseif min(fl_diff)==fl_diff (4)
if min(fh_diff)==fh_diff (1)
key="x*"';
elseif min(fh_diff)==fh_diff (2)
key="0";
elseif min(fh_diff)==fh_diff (3)
key="4#"';
elseif min(fh diff)==fh_diff (4)
key="D";
end
end

Source Codes for GUI Design

qui.m.

5{
%$GUI main function for the GUI design for DTMF.
%$Zexi Huang
$Dec. 16 2016
5}
function varargout = gui (varargin)
GUI M—file for gui.fig
GUI, by itself, creates a new GUI or raises the existing

singletonx*.

H = GUI returns the handle to a new GUI or the handle to
the existing singletonx.

GUI (' CALLBACK'’ , hObject, eventData, handles, ...) calls the local
function named CALLBACK in GUI.M with the given input arguments.

GUI (' Property’,’Value’,...) creates a new GUI or raises the
existing singleton*. Starting from the left, property value pairs
are

applied to the GUI before gui_OpeningFunction gets called. An

unrecognized property name or invalid value makes property
application

stop. All inputs are passed to gui_OpeningFcn via varargin.

o° oo

o° oo oe

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only
one
instance to run (singleton)".

o° o° oe

See also: GUIDE, GUIDATA, GUIHANDLES

o

Edit the above text to modify the response to help gui

% Begin initialization code — DO NOT EDIT

16



60

66

81
82
83
84
85

86

gui_Singleton = 1;

gui_State = struct (’gui_Name’, mfilename,
"gui_Singleton’, gui_-Singleton,
"gui_OpeningFcn’, @gui_-OpeningFcn,
"gui_OutputFcn’, @gui_OutputFcn,
"gui_LayoutFcn’, 1,
"gui_Callback’, (1)

if nargin & isstr(varargin{l})

gui_State.gui_Callback = str2func(varargin{l});
end

if nargout
[varargout{l:nargout}] = guimainfcn(gui_State, varargin{:});
else
gui-mainfcn (gui_State, varargin{:});
end
% End initialization code — DO NOT EDIT

[

% —— Executes just before gui is made visible.
function gui_OpeningFcn (hObject, eventdata, handles, varargin)
This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to gui (see VARARGIN)

[

% Choose default command line output for gui
handles.output = hObject;

[

% Update handles structure

5 guidata (hObject, handles);

UIWAIT makes guil wait for user response (see UIRESUME)
uiwait (handles.figurel);

o° oP

% —— Outputs from this function are returned to the command line.
function varargout = gui_OutputFcn (hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT) ;
% hObject handle to figure

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o

Get default command line output from handles structure
varargout{l} = handles.output;

% —— Executes on button press in bl.

function bl_Callback (hObject, eventdata, handles)

% hObject handle to bl (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

17



87
88

90
91
92

93

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

121

123
124
125
126
127
128
129
130
131
132

134
135
136

137

139

140

[x,t]=DTMFGenerator ("1");

key="1";

update_gui

% —— Executes on button press in b2.

function b2_Callback (hObject, eventdata, handles)
% hObject handle to b2 (see GCBO)

% eventdata reserved — to be defined in a future
% handles structure with handles and user data
[x,t]=DTMFGenerator ('2’);

key="2";

update_gui

% —— Executes on button press in b3.

function b3_Callback (hObject, eventdata, handles)
% hObject handle to b3 (see GCBO)

% eventdata reserved — to be defined in a future
% handles structure with handles and user data
[x,t]=DTMFGenerator (’'3");

key="3";

update_gui

% —— Executes on button press in b4.

function b4_Callback (hObject, eventdata, handles)
% hObject handle to b4 (see GCBO)

% eventdata reserved — to be defined in a future
% handles structure with handles and user data
[x,t]=DTMFGenerator (’4");

key="4";

update_gui

% —— Executes on button press in bb5.

function b5_Callback (hObject, eventdata, handles)
% hObject handle to b5 (see GCBO)

% eventdata reserved — to be defined in a future
% handles structure with handles and user data
[x,t]=DTMFGenerator ('5");

key="5";

update_gui

% —— Executes on button press in b6.

function b6_Callback (hObject, eventdata, handles)
% hObject handle to b6 (see GCBO)

% eventdata reserved — to be defined in a future
% handles structure with handles and user data
[x,t]=DTMFGenerator (' 6’);

key="6";

update_gui

% Executes on button press in b7.

function b7_Callback (hObject, eventdata, handles)
% hObject handle to b7 (see GCBO)

% eventdata reserved — to be defined in a future
% handles structure with handles and user data
[x,t]=DTMFGenerator ('7");

key="7";

update_gui

18

version of MATLAB
(see GUIDATA)

version of MATLAB
(see GUIDATA)

version of MATLAB
(see GUIDATA)

version of MATLAB
(see GUIDATA)

version of MATLAB
(see GUIDATA)

version of MATLAB
(see GUIDATA)



141
142
143
144
145
146

147

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

194

[

% —— Executes on button press in b8.
function b8_Callback (hObject, eventdata, handles)

% hObject handle to b8 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[x,t]=DTMFGenerator (’'8’);

key="8";

update_gui

% —— Executes on button press in b9.

function b9_Callback (hObject, eventdata, handles)

% hObject handle to b9 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[x,t]=DTMFGenerator (' 9");

key="9";

update_gui

% —— Executes on button press in ba.

function bstar_Callback (hObject, eventdata, handles)

% hObject handle to bstar (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[x,t]=DTMFGenerator (' «");

key='x";

update_gui

% —— Executes on button press in bO.

function b0_Callback (hObject, eventdata, handles)

% hObject handle to b0 (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[x,t]=DTMFGenerator ('0’);

key="0";

update_gui

% —— Executes on button press in bn.

function bcell_Callback (hObject, eventdata, handles)

% hObject handle to bcell (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[x,t]=DTMFGenerator ("#’);

key="4#";

update_gui

function bA_Callback (hObject, eventdata, handles)

% hObject handle to bcell (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[x,t]=DTMFGenerator ('A’);

key="A’;

update_gui

function bB_Callback (hObject, eventdata, handles)

19



195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

233
234
235
236
237
238
239

240
241
242
243
244
245

246

hObject handle to bcell (see GCBO)
eventdata reserved — to be defined in a future version of MATLAB

o° o° oe

handles structure with handles and user data (see GUIDATA)
[x,t]=DTMFGenerator ("B’ ) ;
key="B"’;

update_gui

function bC_Callback (hObject, eventdata, handles)

% hObject handle to bcell (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[x,t]=DTMFGenerator ('C’);

key="C";

update_gui

function bD_Callback (hObject, eventdata, handles)

% hObject handle to bcell (see GCBO)

% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
[x,t]=DTMFGenerator ('D");

key="D’;

update_gui

% —— Executes on mouse press over axes background.
function figl_ButtonDownFcn (hObject, eventdata, handles)
% hObject handle to figl (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% —— Executes during object creation, after setting all properties.
function EditPressed_CreateFcn (hObject, eventdata, handles)
% hObject handle to EditPressed (see GCBO)
% eventdata reserved — to be defined in a future version of MATLAB
% handles empty — handles not created until after all CreateFcns
called
% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set (hObject, 'BackgroundColor’,’white’);
else
set (hObject, 'BackgroundColor’,get (0, ’defaultUicontrolBackgroundColor’
)) i
end

function EditPressed_Callback (hObject, eventdata, handles)
hObject handle to EditPressed (see GCBO)
eventdata reserved — to be defined in a future version of MATLAB

o
°
)

<

20



o\°

handles
Hints: get (hObject,’String’)
str2double (get (hObject,
EditPressed as a double

o oP

update_gui.m.

g

structure with handles and user data

(see GUIDATA)

returns contents of EditPressed as text

"String’)) returns contents of

$GUI update for the GUI design for DTMF.

[

%$Zex1l Huang
%Dec. 16 2016

5}

Q

% For Figurel

axes (handles.figl);
PlotTimeDomain (x, t, key);

; $For key pressed window.

keyPressed=DTMFDetector (x,t);
set (handles.EditPressed,’ String’

[

% For Figure2

axes (handles.fig2);
[X,w]=GoertzelDFT (Xx);
[X,w]=DTFTtoCTFT (X, w) ;

;s plot (w,X);

xlabel (' Frequency (Hz)");
ylabel (' Intensity’);

title(['CTFT Intensity of the Received DTMF Signal for Key ’’’,keyPressed

)

gui.fig. The generated m-file for the layout is to long (over 1000 lines) and thus is

omitted here.

, keyPressed) ;

21



	Introduction
	Problem Formulation and Algorithms
	DTMF Signals Generation
	DTMF Signals Detection

	Numerical Experiments and GUI Interaction
	Parameters and Enviroment
	DTMF Generation Results
	DTMF Detection Results
	GUI Design

	Concluding Remarks
	Appendix
	Source Codes for DTMF Generation
	Source Codes for DTMF Detection
	Source Codes for GUI Design


