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Motivation Graphs

Graphs are ubiquitous

(a) Social network (b) Protein-protein interactions

(c) Recommendation system (d) the Internet
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Motivation Information-rich graphs

Information-rich graphs

(a) Multiscale graph

imposes a limit that every node cannot have too many nega-
tive neighbors in the subgraph, and the positive-edge con-
straint guarantees that every node has a sufficient number
of positive neighbors in the subgraph. Based on Definition 1,
we define the maximal ða; kÞ-clique below.

Definition 2. (Maximal ða; kÞ-clique) An induced subgraph C
is a maximal ða; kÞ-clique if C is an ða; kÞ-clique and there is
no ða; kÞ-clique C0 in G containing C.

Example 1. Consider a signed network shown in Fig. 1a. Sup-
pose that a ¼ 3 and k ¼ 1. We can easily derive that
fv1; v2; v3; v4; v5g is a ð3; 1Þ-clique.Moreover, it is a maximal
ð3; 1Þ-clique, because there is no super clique that can con-
tain it. Similarly, if a ¼ 3 and k ¼ 0, we have two maximal
ð3; 0Þ-cliques which are fv1; v2; v4; v5g and fv1; v3; v4; v5g.
Note that in this case, fv1; v2; v3; v4; v5g is no longer a
ð3; 0Þ-clique, as the node v2 violates the negative-edge
constraint.

Let C be the set of all ða; kÞ-cliques in the signed network
G. The ða; kÞ-clique in C with the largest size is referred to as
the maximum ða; kÞ-clique. In this paper, we aim to find all
maximal ða; kÞ-cliques and the maximum ða; kÞ-clique in a
signed network. Specifically, we formulate our problem as
follows.

Problem Statement. Given a signed network G and the
parameters a, k and r, our goal is to develop efficient algo-
rithms to settle the following two fundamental problems: 1)
enumerate all maximal ða; kÞ-cliques in G; and 2) identify
the maximum ða; kÞ-clique in G.

Note that the maximum ða; kÞ-clique search problem can
be solved easily if we can enumerate all maximal ða; kÞ-
cliques. Below, we focus mainly on analyzing the hardness
and challenges of the maximal ða; kÞ-clique enumeration
problem.

Hardness and Challenges. First, we show that the tradi-
tional maximal clique enumeration problem [8], [14],
[15], [16] is a special case of the maximal ða; kÞ-cliques
enumeration problem. Suppose that a ¼ 0 and k ¼ d�max,
where d�max is the largest negative degree in G. Given this
parameter setting, a maximal ða; kÞ-clique degrades to a
traditional maximal clique. This is because both the nega-
tive-edge and positive-edge constraints in Definition 1
always hold when a ¼ 0 and k ¼ d�max. As a result, enu-
merating all maximal ða; kÞ-cliques is equivalent to
enumerating all traditional maximal cliques if a ¼ 0 and
k ¼ d�max. Therefore, the classic maximal clique enumera-
tion problem is a special case of our problem when the
parameters a ¼ 0 and k ¼ d�max. Since the traditional maxi-
mal clique enumeration problem is NP-hard, our problem
is also NP-hard.

Although there is a close connection between our
problem and the maximal clique problem, the existing
maximal clique enumeration algorithms cannot be imme-
diately applied to solve our problem. This is because the
traditional clique enumeration algorithms, such as the
classic Bron-Kerbosch algorithm and its variants [14],
[15], [16], can only enumerate all maximal cliques, but
they cannot guarantee that all sub-cliques contained in
the maximal cliques will be explored. Since a maximal
ða; kÞ-clique can be a sub-clique of any maximal clique in
the signed network, the traditional clique enumeration
algorithms cannot be directly used for our problem. To
solve our problem, a straightforward method is to find
all the traditional maximal cliques first, and then and
then enumerate all the maximal ða; kÞ-cliques in C for
each traditional maximal clique C. However, this method
is intractable for large signed graphs because the number
of traditional maximal cliques in a signed graph may be
very large and many maximal ða; kÞ-cliques contained
in C may exist for each traditional maximal clique C.
Moreover, this straightforward method may generate
numerous redundant maximal ða; kÞ-cliques because the
same maximal ða; kÞ-clique could be contained in many
overlapped traditional maximal cliques. Therefore, the
main challenge of our problem is how to efficiently enu-
merate every maximal ða; kÞ-clique only once. Several
powerful pruning techniques and a novel branch and
bound algorithm to tackle this challenge are presented
below.

3 SIGNED GRAPH REDUCTION

In this section, we propose several effective rules to prune
the unpromising nodes that are definitely not contained in
any maximal ða; kÞ-clique. LetGþ ¼ ðV;EþÞ be the subgraph
of G ¼ ðV;EÞ that contains all the positive edges in G, in
which Eþ , fðu; vÞjðu; vÞ 2 E, and ðu; vÞ is a positive edge}. For
convenience, we refer to Gþ as the positive-edge graph of
G. For example, Fig. 1b depicts a positive-edge graph of the
signed graph shown in Fig. 1a.

Based on the k-core concept in [9], the maximal positive-
edge dake-core is defined as the maximal induced subgraph
of G such that every node in this subgraph has a positive
degree no less than dake. Clearly, by this definition, the
node set of the maximal positive-edge dake-core in G is the
same as the node set of the maximal dake-core in Gþ. Below,
we show that all maximal ða; kÞ-cliques are contained in the
maximal positive-edge dake-core of G.

Lemma 1. Any maximal ða; kÞ-clique is contained in a connected
component of the maximal positive-edge dake-core of G.

Proof. Clearly, each node in the maximal ða; kÞ-clique has
dake positive neighbors (see Definition 1). Thus, the maxi-
mal ða; kÞ-clique forms an dake-core. Since any maximal
ða; kÞ-clique is connected, it must be contained in a
connected component of the maximal positive-edge
dake-core ofG. tu
To compute maximal ða; kÞ-cliques, we are able to reduce

the signed graph based on Lemma 1. Specifically, we can
first compute the maximal dake-core in Gþ, because its node

Fig. 1. Running example (red edges denote negative edges).
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Fig. 1. A toy example of the studied problem. Different annotations with little over-
lapping are given. Each annotation contains several objects sharing a few focused
attributes within it. But the sharing attributes among different annotations may not
be the same. The aim of this paper is to identify the target cluster that complies to
the multiple annotations as much as possible.

• We introduce a novel problem of user-guided clustering in large attributed
networks with multiple annotations. Different from previous user-preference
guided clustering, which is often biased, using multiple annotations can alle-
viate the bias. To the best of our knowledge, this is the first paper applying
multiple annotations for graph clustering.

• We propose a two-step clustering approach CGMA to address the proposed
problem. CGMA combines multiple annotations in an unbiased way, and it
also amplifies the sparse annotations by re-sampling and expansion process.
The proposed approach has near-linear time complexity.

• We conduct a series of experiments on various large networks to examine
CGMA. The experimental results show the effectiveness and efficiency of our
method.

The rest of this paper is organized as follows. Section 2 will introduce the
related work of this research. Section 3 gives the details of the CGMA algo-
rithm. Next, we will show the experimental results of CGMA on real networks
compared with some competitive baselines in Sect. 4. Finally, Sect. 5 concludes
the paper.

2 Related Work

Clustering of homogeneous graphs can be sorted into two groups, the plain graph
clustering and the attributed graph clustering. Traditional methods mostly target
at plain graphs, and they have been well studied in literatures, for example, the

(c) Attributed graph (d) Physical graph
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Fig. 1. A toy example of the studied problem. Different annotations with little over-
lapping are given. Each annotation contains several objects sharing a few focused
attributes within it. But the sharing attributes among different annotations may not
be the same. The aim of this paper is to identify the target cluster that complies to
the multiple annotations as much as possible.

• We introduce a novel problem of user-guided clustering in large attributed
networks with multiple annotations. Different from previous user-preference
guided clustering, which is often biased, using multiple annotations can alle-
viate the bias. To the best of our knowledge, this is the first paper applying
multiple annotations for graph clustering.

• We propose a two-step clustering approach CGMA to address the proposed
problem. CGMA combines multiple annotations in an unbiased way, and it
also amplifies the sparse annotations by re-sampling and expansion process.
The proposed approach has near-linear time complexity.

• We conduct a series of experiments on various large networks to examine
CGMA. The experimental results show the effectiveness and efficiency of our
method.

The rest of this paper is organized as follows. Section 2 will introduce the
related work of this research. Section 3 gives the details of the CGMA algo-
rithm. Next, we will show the experimental results of CGMA on real networks
compared with some competitive baselines in Sect. 4. Finally, Sect. 5 concludes
the paper.

2 Related Work

Clustering of homogeneous graphs can be sorted into two groups, the plain graph
clustering and the attributed graph clustering. Traditional methods mostly target
at plain graphs, and they have been well studied in literatures, for example, the
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Fig. 1. A toy example of the studied problem. Different annotations with little over-
lapping are given. Each annotation contains several objects sharing a few focused
attributes within it. But the sharing attributes among different annotations may not
be the same. The aim of this paper is to identify the target cluster that complies to
the multiple annotations as much as possible.

• We introduce a novel problem of user-guided clustering in large attributed
networks with multiple annotations. Different from previous user-preference
guided clustering, which is often biased, using multiple annotations can alle-
viate the bias. To the best of our knowledge, this is the first paper applying
multiple annotations for graph clustering.

• We propose a two-step clustering approach CGMA to address the proposed
problem. CGMA combines multiple annotations in an unbiased way, and it
also amplifies the sparse annotations by re-sampling and expansion process.
The proposed approach has near-linear time complexity.

• We conduct a series of experiments on various large networks to examine
CGMA. The experimental results show the effectiveness and efficiency of our
method.

The rest of this paper is organized as follows. Section 2 will introduce the
related work of this research. Section 3 gives the details of the CGMA algo-
rithm. Next, we will show the experimental results of CGMA on real networks
compared with some competitive baselines in Sect. 4. Finally, Sect. 5 concludes
the paper.
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very large and many maximal ða; kÞ-cliques contained
in C may exist for each traditional maximal clique C.
Moreover, this straightforward method may generate
numerous redundant maximal ða; kÞ-cliques because the
same maximal ða; kÞ-clique could be contained in many
overlapped traditional maximal cliques. Therefore, the
main challenge of our problem is how to efficiently enu-
merate every maximal ða; kÞ-clique only once. Several
powerful pruning techniques and a novel branch and
bound algorithm to tackle this challenge are presented
below.

3 SIGNED GRAPH REDUCTION

In this section, we propose several effective rules to prune
the unpromising nodes that are definitely not contained in
any maximal ða; kÞ-clique. LetGþ ¼ ðV;EþÞ be the subgraph
of G ¼ ðV;EÞ that contains all the positive edges in G, in
which Eþ , fðu; vÞjðu; vÞ 2 E, and ðu; vÞ is a positive edge}. For
convenience, we refer to Gþ as the positive-edge graph of
G. For example, Fig. 1b depicts a positive-edge graph of the
signed graph shown in Fig. 1a.

Based on the k-core concept in [9], the maximal positive-
edge dake-core is defined as the maximal induced subgraph
of G such that every node in this subgraph has a positive
degree no less than dake. Clearly, by this definition, the
node set of the maximal positive-edge dake-core in G is the
same as the node set of the maximal dake-core in Gþ. Below,
we show that all maximal ða; kÞ-cliques are contained in the
maximal positive-edge dake-core of G.

Lemma 1. Any maximal ða; kÞ-clique is contained in a connected
component of the maximal positive-edge dake-core of G.

Proof. Clearly, each node in the maximal ða; kÞ-clique has
dake positive neighbors (see Definition 1). Thus, the maxi-
mal ða; kÞ-clique forms an dake-core. Since any maximal
ða; kÞ-clique is connected, it must be contained in a
connected component of the maximal positive-edge
dake-core ofG. tu
To compute maximal ða; kÞ-cliques, we are able to reduce

the signed graph based on Lemma 1. Specifically, we can
first compute the maximal dake-core in Gþ, because its node

Fig. 1. Running example (red edges denote negative edges).
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(b) Signed graph
User-Guided Large Attributed Graph Clustering 129

Fig. 1. A toy example of the studied problem. Different annotations with little over-
lapping are given. Each annotation contains several objects sharing a few focused
attributes within it. But the sharing attributes among different annotations may not
be the same. The aim of this paper is to identify the target cluster that complies to
the multiple annotations as much as possible.

• We introduce a novel problem of user-guided clustering in large attributed
networks with multiple annotations. Different from previous user-preference
guided clustering, which is often biased, using multiple annotations can alle-
viate the bias. To the best of our knowledge, this is the first paper applying
multiple annotations for graph clustering.

• We propose a two-step clustering approach CGMA to address the proposed
problem. CGMA combines multiple annotations in an unbiased way, and it
also amplifies the sparse annotations by re-sampling and expansion process.
The proposed approach has near-linear time complexity.

• We conduct a series of experiments on various large networks to examine
CGMA. The experimental results show the effectiveness and efficiency of our
method.

The rest of this paper is organized as follows. Section 2 will introduce the
related work of this research. Section 3 gives the details of the CGMA algo-
rithm. Next, we will show the experimental results of CGMA on real networks
compared with some competitive baselines in Sect. 4. Finally, Sect. 5 concludes
the paper.

2 Related Work

Clustering of homogeneous graphs can be sorted into two groups, the plain graph
clustering and the attributed graph clustering. Traditional methods mostly target
at plain graphs, and they have been well studied in literatures, for example, the

(c) Attributed graph (d) Physical graph
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Motivation Social polarization

Social polarization
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Motivation Polarization and signed link prediction

?

?

Quantifying polarization & signed link prediction
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Motivation Graph-based downstream tasks

Graph-based applications

I (Signed) link prediction

I Node classification

I Community detection

I Graph regression
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Motivation Representation learning

Representation learning: extract useful information from data
... for images

I e.g., convolutional neural networks (CNN)

... for text

I e.g., skip-gram, transformers

... for graphs

International Conference on
Learning Representations
(ICLR)
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Motivation Node embedding

DeepWalk: Online Learning of Social Representations
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ABSTRACT
We present DeepWalk, a novel approach for learning la-
tent representations of vertices in a network. These latent
representations encode social relations in a continuous vector
space, which is easily exploited by statistical models. Deep-
Walk generalizes recent advancements in language mod-
eling and unsupervised feature learning (or deep learning)
from sequences of words to graphs.

DeepWalk uses local information obtained from trun-
cated random walks to learn latent representations by treat-
ing walks as the equivalent of sentences. We demonstrate
DeepWalk’s latent representations on several multi-label
network classification tasks for social networks such as Blog-
Catalog, Flickr, and YouTube. Our results show that Deep-
Walk outperforms challenging baselines which are allowed
a global view of the network, especially in the presence of
missing information. DeepWalk’s representations can pro-
vide F1 scores up to 10% higher than competing methods
when labeled data is sparse. In some experiments, Deep-
Walk’s representations are able to outperform all baseline
methods while using 60% less training data.

DeepWalk is also scalable. It is an online learning algo-
rithm which builds useful incremental results, and is trivially
parallelizable. These qualities make it suitable for a broad
class of real world applications such as network classifica-
tion, and anomaly detection.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications
- Data Mining; I.2.6 [Artificial Intelligence]: Learning;
I.5.1 [Pattern Recognition]: Model - Statistical

1. INTRODUCTION
The sparsity of a network representation is both a strength

and a weakness. Sparsity enables the design of efficient dis-
crete algorithms, but can make it harder to generalize in
statistical learning. Machine learning applications in net-
works (such as network classification [15, 37], content rec-

c©The authors, 2014. This is the author’s draft of the work. It is posted here
for your personal use. Not for redistribution. The definitive version was
published in KDD’14, http://dx.doi.org/10.1145/2623330.
2623732

(a) Input: Karate Graph (b) Output: Representation

Figure 1: Our proposed method learns a latent space rep-
resentation of social interactions in Rd. The learned rep-
resentation encodes community structure so it can be eas-
ily exploited by standard classification methods. Here, our
method is used on Zachary’s Karate network [44] to gen-
erate a latent representation in R2. Note the correspon-
dence between community structure in the input graph and
the embedding. Vertex colors represent a modularity-based
clustering of the input graph.

ommendation [11], anomaly detection [5], and missing link
prediction [22]) must be able to deal with this sparsity in
order to survive.

In this paper we introduce deep learning (unsupervised
feature learning) [2] techniques, which have proven success-
ful in natural language processing, into network analysis for
the first time. We develop an algorithm (DeepWalk) that
learns social representations of a graph’s vertices, by mod-
eling a stream of short random walks. Social representa-
tions are latent features of the vertices that capture neigh-
borhood similarity and community membership. These la-
tent representations encode social relations in a continuous
vector space with a relatively small number of dimensions.
DeepWalk generalizes neural language models to process a
special language composed of a set of randomly-generated
walks. These neural language models have been used to
capture the semantic and syntactic structure of human lan-
guage [6], and even logical analogies [28].
DeepWalk takes a graph as input and produces a la-

tent representation as an output. The result of applying our
method to the well-studied Karate network is shown in Fig-
ure 1. The graph, as typically presented by force-directed
layouts, is shown in Figure 1a. Figure 1b shows the output
of our method with 2 latent dimensions. Beyond the striking
similarity, we note that linearly separable portions of (1b)
correspond to clusters found through modularity maximiza-
tion in the input graph (1a) (shown as vertex colors).

To demonstrate DeepWalk’s potential in real world sce-

ar
X

iv
:1

40
3.

66
52

v2
  [

cs
.S

I] 
 2

7 
Ju

n 
20

14

Nodes in a graph
representation learning
=============⇒ feature vectors (embeddings)

Zexi Huang Information-rich Graph Embedding May 28, 2021 8 / 49



Motivation Overview

       Multiscale graphs1,5

Signed graphs2

Attributed graphs3,4

Heterogeneous graphs4

Node
representation

learning

Information-rich
graphs

       
Node classification1,3,4

Link prediction1,2

Community detection1,5

Quantifying polarization2

Downstream
applications

Fraud detection4

1Huang, Silva, Singh. A broader picture of random-walk based graph embedding. KDD’21.
2Huang, Silva, Singh. Signed embedding for polarized graphs. Working draft.
3Ye, Huang, Singh. Krylov graph convolutional networks. Under review.
4Huang. Graph-based fraud detection in Kindle Direct Publishing. Amazon internship report.
5Huang*, Kondapaneni*, Silva, Singh. Multiscale community detection based on PMI. Ongoing.
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Problems

Outline

1. Motivation

2. Problems
2.1 Random-walk based embedding
2.2 Signed graph embedding
2.3 Attributed graph embedding

3. Conclusions and plan
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Problems Random-walk based embedding

Earlier work

I Spectral graph theory6

I Nonlinear dimensionality reduction7

I Graph drawing8

Deep learning

I Skip-gram for text: word2vec9

I Skip-gram for graph: DeepWalk10

w1 w2 w3 w4
wc wo

radius 𝜏

sentence

v1 v2 v3 v4
wc wo

radius 𝜏

1
2 3

4

random walk

6Chung. Spectral graph theory. 1997.
7Belkin, Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. NeurIPS’02.
8D́ıaz, Petit, Serna. A survey of graph layout problems. CSUR’02.
9Mikolov et al. Distributed representations of words and phrases and their compositionality. NeurIPS’13.

10Perozzi, Al-Rfou, Skiena. Deepwalk: Online learning of social representations. KDD’14.
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Problems Random-walk based embedding

Different random-walks
I node2vec11: biased towards BFS/DFS
I APP12: rooted PageRank

Different embedding algorithms
I NefMF13: explicit matrix factorization
I NetSMF14: spectral sparsifiers for efficiency

Different similarity metrics
I Stability15: autocovariance for multiscale community detection
I Multiscale16: autocovariance embedding as a special case

11Grover, Leskovec. node2vec: Scalable feature learning fornetworks. KDD’16.
12Zhou et al. Scalable graph embedding for asymmetric proximity. AAAI’17.
13Qiu et al. Network embedding as matrix factorization: Unifying deepwalk, line, pte, and node2vec. WSDM’18.
14Qiu et al. Netsmf: Large-scale network embedding as sparse matrix factorization. WebConf’19.
15Delvenne et al. Stability of graphcommunities across time scales. PNAS’10.
16Schaub et al. Multiscale dynamical embeddings of complex networks. PRE’19.
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Problems Random-walk based embedding

Problems & questions:

I Difficult to compare existing methods and to advance the SOTA.

I How should embeddings be used for link prediction?

I How do embeddings capture different structural scales?
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Problems Random-walk based embedding

A broader picture1

Random-walk embedding methods
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1Huang, Silva, Singh. A broader picture of random-walk based graph embedding. KDD’21.
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Problems Random-walk based embedding

Our framework

Similarity metricRandom‐walk process

Embedding algorithm

Similarity metricRandom‐walk process

Embedding algorithm

Similarity metricRandom‐walk process

Embedding algorithm
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Problems Random-walk based embedding

Comparing similarity metrics

PMI: R = log(ΠM τ)− log(ππT )
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Problems Random-walk based embedding

Comparing similarity metrics

PMI: R = log(ΠM τ)− log(ππT ) Autocovariance: R = ΠM τ − ππT
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Figure: PMI consistently outperforms autocovariance in node classification.
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Comparing similarity metrics
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Figure: Autocovariance consistently outperforms PMI in link prediction.
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Problems Random-walk based embedding

Comparing similarity metrics

predicted degree ∝ embedding norm ∝
{

actual degree for autocov.

constant for PMI

Autocovariance captures heterogeneous degree distribution in graphs!

Figure: Autocovariance embedding norms correlated with actual degrees, but not PMI.
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Problems Random-walk based embedding

Multiscale

PMI: R = log(ΠM τ)− log(ππT )
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Figure: Node classification performance for
PMI can be improved by smooth-averaging
across multiple Markov times.
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Figure: Prediction of edges of specific
structural scales can be improved with
different Markov times for autocovariance.
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Problems Random-walk based embedding

Multiscale
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Problems Random-walk based embedding

Problems & questions:

I Difficult to compare existing methods and to advance the SOTA.

I How should embeddings be used for link prediction?

I How do embeddings capture different structural scales?

Contributions:

I A unified view of different processes, similarities, and algorithms.

I Autocovariance embedding is significantly better for link prediction.

I Ways to exploit multiscale similarity for optimized performance.
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Problems Random-walk based embedding

PMI-based multiscale community detection5

I Stability15,17: multiscale
community detection based
on clustered autocovariance

I + PMI similarity

I with Louvain algorithm18.
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Figure: PMI outperforms both methods based
on autocovariance in community detection.

5Huang*, Kondapaneni*, Silva, Singh. Multiscale community detection based on PMI. Ongoing.
15Delvenne et al. Stability of graphcommunities across time scales. PNAS’10.
17Patelli et al. Generalized Markov stability of network communities. PRE’20.
18Blondel et al. Fast unfolding of communities in large networks. JSTAT’08.

Zexi Huang Information-rich Graph Embedding May 28, 2021 22 / 49



Problems Signed graph embedding

Outline
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2. Problems
2.1 Random-walk based embedding
2.2 Signed graph embedding
2.3 Attributed graph embedding

3. Conclusions and plan
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Problems Signed graph embedding

Signed graphs: friendly (+) and adversarial (−) relationships
I e.g., bitcoin markets19, U.S. Congress20, online social networks21

I Signed link prediction22

I Polarized community detection23

?

?

?
?

19Kumar et al. Edge weight prediction in weighted signed networks. ICDM’16.
20Thomas, Pang, Lee. Get out the vote: determining support or opposition from congressional floor-debate

transcripts. EMNLP’06.
21Lai et al. Stance evolution and Twitter interactions in an Italian political debate. NLDB’18.
22Beigi et al. Signed link prediction with sparse data: The role of personality information. WebConf’19.
23Bonchi et al. Discovering polarized communities in signed networks. CIKM’19.
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Problems Signed graph embedding

Social balance theory24:

I SiNE25

I SIGNet26

I SIDE27

Social status theory28:

I BESIDE29

Network transformation30
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24Heider. Attitudes and cognitive organization. J. Psychol.’46.
25Wang et al. Signed network embedding in social media. SDM’17.
26Islam et al. Signet: Scalable embeddings for signed networks. PAKDD’18.
27Kim et al. Side: representation learning in signed directed networks. WebConf’18.
28Guha et al. Propagation of trust and distrust. WebConf’04.
29Chen et al. “Bridge” enhanced signed directed network embedding. CIKM’18.
30Javari et al. ROSE: Role-based signed network embedding. WebConf’20.
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Problems Signed graph embedding

Existing methods:

I Only consider signed similarity order: positive > negative

I Leave topological similarity order (connected vs disconnected) to
unsigned embedding methods

I Works for edge sign prediction31,32 (existence of edges known)
I In signed link prediction22 (existence of edges unknown): two-step

1 Apply unsigned methods to predict the existence of edges
2 Predict the signs on those pre-predicted edges

31Leskovec et al. Predicting positive and negative links in online social networks. WebConf’10.
32Chiang et al. Exploiting longer cycles for link prediction in signed networks. CIKM’11.
22Beigi et al. Signed link prediction with sparse data: The role of personality information. WebConf’19.
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Problems Signed graph embedding

Signed link prediction in polarized graphs2

I Intra-community edges:
dense, positive

I Inter-community edges:
sparse, negative
(almost impossible
to predict for unsigned
methods due to sparsity)

I Are real-world signed
graphs often polarized?

2Huang, Silva, Singh. Signed embedding for polarized graphs. Working draft.
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Problems Signed graph embedding

A polarization measure

I Unsigned random-walk transition:
|M |ij =

∑
all paths l between i and j Prob(l)

–
+

–

–
–

+

I Signed random-walk transition:
Mij =

∑
all paths l between i and j Prob(l)Sign(l) ← from balance theory

I Key observation: |M |:i and M:i are highly correlated if i is polarized.
I Define Pol(i) = corr(|M |:i,M:i), and Pol(G) = average of Pol(i).
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Problems Signed graph embedding

Least polarized politicians in U.S. Congress

I Henry Cuellar (Pol = −0.65), Democrat, “moderate-centrist”,
voted with President Trump 75% of the time33

I Jane Harman (Pol = −0.54), Democrat, “centralist”,
“the best Republican in the Democratic Party”34

33Malone. A Q&A with the House Democrat who’s voted with trump 75 percent of the time. FiveThirtyEight’17.
34Skelton. California and the west: in the ring, with contenders for governor. LA Times’98.
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Problems Signed graph embedding

Polarization of real-world graphs

LFR35-polarized
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35Lancichinetti et al. Benchmark graphs for testing community detection algorithms. PRE’08.
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Problems Signed graph embedding

Signed random-walk similarity

I Existing methods: keep signed similarity order (positive > negative)

I Proposed model: extend autocovariance for signed random-walks
with full similarity order (positive > disconnected > negative)

I Predict polarized inter-community edges with most dissimilar pairs

Table: Average dot product similarity between embeddings of node pairs.

Wiki-RfA Bitcoin-OTC Bitcoin-alpha Congress WoW-EP8 Referendum

Positive 13.11 17.02 18.09 21.54 1.63 4.62
Disconnected -0.01 -0.01 -0.02 -0.28 -0.24 -0.01
Negative -5.92 -70.95 -56.82 -27.59 -2.85 -9.47
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Problems Signed graph embedding

Signed link prediction

I For our method: rank signed similarity and predict
positive/negative edges as the most similar/dissimilar pairs

I For baselines: train two classifiers on the concatenated node
embeddings for positive and negative edges separately

I Knowledge on the existence of edges unavailable
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Problems Signed graph embedding

Signed link prediction

Table: Our method significantly outperforms baselines in signed link prediction.

Precision @ 100% SIGNet SIDE BESIDE SiNE ROSE Our work

Wiki-RfA
Positive 0.0028 0.0002 0.0056 0.0098 0.0379 0.1795
Negative 0.0000 0.0043 0.0016 0.0007 0.0132 0.0112

Bitcoin-OTC
Positive 0.0008 0.0003 0.0325 0.0058 0.0494 0.0935
Negative 0.0000 0.0045 0.0076 0.0030 0.0227 0.2727

Bitcoin-alpha
Positive 0.0000 0.0004 0.0259 0.0040 0.0626 0.1181
Negative 0.0000 0.0032 0.0226 0.0097 0.0226 0.0903

Congress
Positive 0.0000 0.0000 0.0125 0.0000 0.0250 0.1250
Negative 0.0000 0.0000 0.0000 0.0400 0.0000 0.1600

WoW-EP8
Positive 0.2104 0.0949 0.1348 0.1831 0.4060 0.6201
Negative 0.0361 0.0749 0.0553 0.0395 0.1221 0.1475

Referendum
Positive 0.0002 0.0465 0.0413 0.0440 0.0854 0.1900
Negative 0.0000 0.0020 0.0056 0.0000 0.0234 0.0429
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Problems Signed graph embedding

Signed link prediction with unsigned link prediction knowledge

I Combine the ranking scores from each method with unsigned
reconstructed autocovariance similarity

I Train two classifiers to predict positive/negative edges with
combined scores

I Knowledge on the existence of edges available
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Problems Signed graph embedding

Signed link prediction with unsigned link prediction knowledge

Table: Our method outperforms baselines, especially for (polarized) negative edges.

Precision @ 100% SIGNet SIDE BESIDE SiNE ROSE Our work

Wiki-RfA
Positive 0.1700 0.1694 0.1722 0.1726 0.1710 0.1810
Negative 0.0290 0.0289 0.0308 0.0314 0.0335 0.0613

Bitcoin-OTC
Positive 0.0811 0.0824 0.0882 0.0805 0.0844 0.0954
Negative 0.1939 0.2030 0.2242 0.2152 0.1894 0.2848

Bitcoin-alpha
Positive 0.1053 0.1113 0.0994 0.1018 0.1145 0.1157
Negative 0.1194 0.1226 0.1194 0.1161 0.1065 0.1387

Congress
Positive 0.1000 0.1125 0.0875 0.1000 0.1375 0.1000
Negative 0.0400 0.0400 0.0000 0.0000 0.0000 0.1600

WoW-EP8
Positive 0.4454 0.4624 0.4553 0.4605 0.6014 0.6163
Negative 0.0911 0.1367 0.1288 0.1233 0.1644 0.2539

Referendum
Positive 0.1746 0.1775 0.1719 0.1706 0.1714 0.1903
Negative 0.0461 0.0326 0.0942 0.0679 0.0457 0.1132
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Problems Signed graph embedding

Contributions

I Design a polarization measure for nodes in/and signed graphs.

I Identify the problem of past work in polarized signed link prediction.

I Propose a signed embedding model that solves the problem and
significantly outperforms SOTA in various real-world signed graphs.

Future work

I Extending other types of similarity to signed graphs (e.g., PMI).

I A model that leverages the polarization measure to guide the use of
signed and unsigned similarity for signed link prediction.
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Problems Attributed graph embedding

Outline

1. Motivation

2. Problems
2.1 Random-walk based embedding
2.2 Signed graph embedding
2.3 Attributed graph embedding

3. Conclusions and plan
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Problems Attributed graph embedding

Attributed graphs

I Citation networks36:
e.g., Cora, Pubmed

I Wikipedia networks37:
e.g., Chameleon, Squirrel

Embedding objectives

I Unsupervised38:
e.g., topological similarity

I (Semi-)supervised39:
e.g., node classification

User-Guided Large Attributed Graph Clustering 129

Fig. 1. A toy example of the studied problem. Different annotations with little over-
lapping are given. Each annotation contains several objects sharing a few focused
attributes within it. But the sharing attributes among different annotations may not
be the same. The aim of this paper is to identify the target cluster that complies to
the multiple annotations as much as possible.

• We introduce a novel problem of user-guided clustering in large attributed
networks with multiple annotations. Different from previous user-preference
guided clustering, which is often biased, using multiple annotations can alle-
viate the bias. To the best of our knowledge, this is the first paper applying
multiple annotations for graph clustering.

• We propose a two-step clustering approach CGMA to address the proposed
problem. CGMA combines multiple annotations in an unbiased way, and it
also amplifies the sparse annotations by re-sampling and expansion process.
The proposed approach has near-linear time complexity.

• We conduct a series of experiments on various large networks to examine
CGMA. The experimental results show the effectiveness and efficiency of our
method.

The rest of this paper is organized as follows. Section 2 will introduce the
related work of this research. Section 3 gives the details of the CGMA algo-
rithm. Next, we will show the experimental results of CGMA on real networks
compared with some competitive baselines in Sect. 4. Finally, Sect. 5 concludes
the paper.

2 Related Work

Clustering of homogeneous graphs can be sorted into two groups, the plain graph
clustering and the attributed graph clustering. Traditional methods mostly target
at plain graphs, and they have been well studied in literatures, for example, the

36Sen et al. Collective classification in network data. AI Magazine’08.
37Rozemberczki et al. Multi-scale attributed node embedding. J. Complex Netw.’21.
38Kipf, Welling. Variational graph auto-encoders. arXiv’16.
39Kipf, Welling. Semi-supervised classification with graph convolutional networks. arXiv’16.
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Problems Attributed graph embedding

Graph Neural Networks (GNN)

I Rationale: learn to aggregate
attributes from neighbors.

Aggregation

I GCN39, GraphSAGE40

Edge weighting

I AGNN41, GAT42, GraphSAGE

Multi-hop neighborhood

I LanczosNet43, PPNP44

Neighborhood Aggregation

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 12

§ Key idea: Generate node embeddings
based on local neighborhoods. 
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Neighborhood Aggregation

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 12

§ Key idea: Generate node embeddings
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39Kipf, Welling. Semi-supervised classification with graph convolutional networks. arXiv’16.
40Hamilton et al. Inductive representation learning on large graphs. NeurIPS’17.
41Thekumparampil et al. Attention-based graph neural network for semi-supervised learning. arXiv’18.
42Veličković et al. Graph attention networks. ICLR’18.
43Liao et al. Lanczosnet: Multi-scale deep graph convolutional networks. ICLR’19.
44Klicpera et al. Predict then propagate: Graph neural networks meet personalized pagerank. ICLR’19.
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Problems Attributed graph embedding

Challenges:

I Stacking too few layers can’t capture the multi-hop information.

I Stacking too many layers leads to oversmoothing45,46.

Solution: learn to aggregate multi-hop neighborhood3

45Li et al. Deeper insights into graph convolutional networks for semi-supervised learning. AAAI’18
46Xu et al. Representation learning on graphs with jumping knowledge networks. ICML’18.

3Ye, Huang, Singh. Krylov graph convolutional networks. Under review.
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Problems Attributed graph embedding

Simple Graph Convolution47:

H(k) = σ(M̃kXΘ)

H(k): kth order embedding, X: node attributes, Θ: trainable weights

M̃ : random-walk transition with added self-loops

40 20 0 20 40
60

40

20

0

20

40

60

(a) k = 0
50 25 0 25 50

60

40

20

0

20

40

60

80

(b) k = 1
50 25 0 25 50

60

40

20

0

20

40

60

(c) k = 19
4 2 0 2 4

6

4

2

0

2

4

6

8

(d) k = 10000

Figure: Visualization of embedding without training for Cora. Colors denote actual
classes. A good choice of neighborhood helps reveal the cluster structure.

47Wu et al. Simplifying graph convolutional networks. ICML’19.
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Problems Attributed graph embedding

Weighting neighborhoods
I Need to assign right weights to different orders of neighborhoods.
I Crucial for semi-supervised learning in sparsely labeled graphs.
I Weights should be adaptive to different datasets.

Krylov Graph Convolutional Network

H = σ(
K∑
k=0

αkM̃
kXΘ)

I Weights for different neighborhoods are learned for each dataset.
I Krylov tensor (XΘ, M̃XΘ, ..., M̃KXΘ) can be computed

iteratively for efficiency, since M̃ is sparse.
I This procedure can also be viewed as the power iteration for M̃ .
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Problems Attributed graph embedding

Semi-supervised node classification for sparsely labeled graphs
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Figure: Our method (KGCN) outperforms the baselines in almost all cases.
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Problems Attributed graph embedding

Learned neighborhood weights
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(d) Squirrel

Figure: Mean neighborhood weights (over 30 splits) are different across datasets. Note
that Cora and Pubmed have larger weights for high-order neighborhoods compared to
Chameleon and Squirrel.
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Problems Attributed graph embedding

Contributions:

I Interpret the GCN propagation rule as power iteration, with its
Krylov tensor encoding multi-hop neighborhood information.

I Propose to learn the weights for combining different orders of
neighborhood information, adaptive to different datasets.

I Outperforms SOTA on various sparsely labeled graphs.
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Problems Attributed graph embedding

Leveraging topology and attribute information
I Internship: attributed multiplex heterogeneous graph embedding48

I GCNs, GATs, random-walks, skip-grams, etc.
I Authors provide a over-simplified implementation.

Published as a conference paper at ICLR 2021
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(b) µ = Xwy , Σ = τ(L+ γI)−1.

Figure 1: The coefficient of determination R2 (the higher the better) of GNNs and MLP when
the graph plays (a) the representational role or (b) the correlational role. For each configuration,
the results are aggregated from 100 trials. In (a), all GNNs outperform MLP; in (b), all GNNs
underperform MLP.

(c) µ = D̃−1ÃXwy , Σ = τ(L+ γI)−1.

Depending on how (µ,Σ) are configured, we get three types of synthetic data settings: (a), (b), and
(c). Intuitively, the graph plays a pure representational role in setting (a) since the label of a node
depends on the aggregated features of its local neighborhood and the node labels are independent
conditional on the node features. In setting (b), the graph plays a pure correlational role; while the
means of node labels only depend on their own node features, the node labels are still correlated
conditional on the features, and the correlation is determined by the graph structure. Finally, setting
(c) is a combination of (a) and (b) where the graph plays both representational and correlational
roles.

In the rest of this section, we test the performance of a few widely used GNNs under setting (a) and
(b) to examine their capabilities of utilizing the representational and correlational information. We
defer the experimental results under setting (c) to Section 5.2 for ease of reading.

3.3 SIMULATION STUDY

Simulation Setup. We set the number of nodes n = 300, the number of edges s = 5000, and
the feature dimension d0 = 10. Elements of both Wg and wy are generated from i.i.d. standard
normal distribution. For setting (a), we vary σ2 ∈ {2.5, 5, 10, 20}. For settings (b) and (c), we
set γ = 0.1 and vary τ ∈ {0.5, 1, 2, 5}. We test 4 common GNN models, GCN (Kipf & Welling,
2016), GraphSAGE (Hamilton et al., 2017) (denoted as SAGE), GAT (Veličković et al., 2018), and
APPNP (Klicpera et al., 2018), as well as the multi-layer perceptron (MLP).

Simulation Results. First, we observe that all 4 types of GNNs outperform MLP under setting
(a) (Figure 1a), where the graph plays a pure representational role. This is not surprising as the
architectures of the GNNs encode a similar feature aggregation structure as the data. However,
under setting (b) (Figure 1b) where the graph plays a pure correlational role, all 4 types of GNNs
underperform MLP. This suggests that a majority of popular GNN models might be incapable of
fully utilizing the correlational graph information.

Motivated by our findings in the simulation study, in the following section, we seek for methods
that augment existing GNN models in order to better utilize both representational and correlational
information in the graph.

4 COPULA GRAPH NEURAL NETWORK

In this section, we propose a principled solution called the Copula Graph Neural Network (Copu-
laGNN). At the core of our method is the application of copulas, which are widely used for modeling
multivariate dependence. In the rest of this section, we first provide a brief introduction to copulas
(more detailed expositions can be found in the monographs by Joe (2014) and Czado (2019)), then
present the proposed CopulaGNN and its parameterization, learning, and inference.
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All GNNs underperform the
basic MLP in regression49.

I Need better ways to use topological
information in GNNs, not just as the
computational graph for aggregation.

I As an attempt, CopulaGNN49 adds
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48Cen et al. Representation learning for attributed multiplex heterogeneous network. KDD’19.
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underperform MLP.
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(c) µ = D̃−1ÃXwy , Σ = τ(L+ γI)−1.

Depending on how (µ,Σ) are configured, we get three types of synthetic data settings: (a), (b), and
(c). Intuitively, the graph plays a pure representational role in setting (a) since the label of a node
depends on the aggregated features of its local neighborhood and the node labels are independent
conditional on the node features. In setting (b), the graph plays a pure correlational role; while the
means of node labels only depend on their own node features, the node labels are still correlated
conditional on the features, and the correlation is determined by the graph structure. Finally, setting
(c) is a combination of (a) and (b) where the graph plays both representational and correlational
roles.

In the rest of this section, we test the performance of a few widely used GNNs under setting (a) and
(b) to examine their capabilities of utilizing the representational and correlational information. We
defer the experimental results under setting (c) to Section 5.2 for ease of reading.

3.3 SIMULATION STUDY

Simulation Setup. We set the number of nodes n = 300, the number of edges s = 5000, and
the feature dimension d0 = 10. Elements of both Wg and wy are generated from i.i.d. standard
normal distribution. For setting (a), we vary σ2 ∈ {2.5, 5, 10, 20}. For settings (b) and (c), we
set γ = 0.1 and vary τ ∈ {0.5, 1, 2, 5}. We test 4 common GNN models, GCN (Kipf & Welling,
2016), GraphSAGE (Hamilton et al., 2017) (denoted as SAGE), GAT (Veličković et al., 2018), and
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Conclusions and plan

Conclusions: extracting key information for applications
I Heterogeneous degree distribution for link prediction1

I Full similarity order for polarized signed link prediction2

I Adaptive neighborhood weighting for sparsely labeled node classification3

       Multiscale graphs1,5

Signed graphs2

Attributed graphs3,4

Heterogeneous graphs4

Node
representation

learning

Information-rich
graphs

       
Node classification1,3,4

Link prediction1,2

Community detection1,5

Quantifying polarization2

Downstream
applications

Fraud detection4

1Huang, Silva, Singh. A broader picture of random-walk based graph embedding. KDD’21.
2Huang, Silva, Singh. Signed embedding for polarized graphs. Working draft.
3Ye, Huang, Singh. Krylov graph convolutional networks. Under review.
4Huang. Graph-based fraud detection in Kindle Direct Publishing. Amazon internship report.
5Huang*, Kondapaneni*, Silva, Singh. Multiscale community detection based on PMI. Ongoing.

Zexi Huang Information-rich Graph Embedding May 28, 2021 48 / 49



Conclusions and plan

Plan

Jun/21: Start working on leveraging topology and attributes

Aug/21: Finish paper on signed embedding

Oct/21: Finish paper on PMI clustering

Jun/22: Proposal

...

?/23: Defense
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