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Introduction Representation learning

Representation learning: extract useful information from data

For images:
I e.g., convolutional neural networks (CNNs)

For text:
I e.g., skip-gram, transformers

For graphs:
I node embedding
I graph neural networks (GNNs)

Applications: social network analysis (node classification and community
detection), product recommendation (link prediction), fraud detection
(anomaly detection), drug discovery (graph classification), ...
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Introduction Information-rich graphs

Information-rich graphs

(a) Multiscale graph

(b) Signed graph
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Introduction My research

My research

       
Multiscale graphs


Signed graphs


Attributed graphs


Heterogeneous graph


Graph
Representation

Learning

Information-rich
Graphs

       

Node classification


Link prediction


Community detection


Measuring polarization


Applications

Counterfactual explanation


Anomaly detection
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Introduction My research

       
Multiscale graphs [1, 3, 6, 7]


Signed graphs [2]


Attributed graphs [3, 4, 5, 7, 8]


Heterogeneous graph [8]


Graph
Representation

Learning

Information-rich
Graphs

       

Node classification [1, 3]


Link prediction [1, 2, 4]


Community detection [1, 6]


Measuring polarization [2]


Applications

Counterfactual explanation [5]


Anomaly detection [7, 8]


1Huang, Silva, Singh. A broader picture of random-walk based graph embedding. KDD’21.

2Huang, Silva, Singh. POLE: Polarized embedding for signed networks. WSDM’22.
3Ye, Huang, Hong, Singh. Graph convolutional networks meet neural diffusions. Under review.
4Huang, Kosan, Silva, Singh. Link prediction without graph neural networks. Under review.
5Huang*, Kosan*, et al. GCFExplainer: Global counterfactual explainer for graph neural networks. Ongoing.
6Kondapaneni*, Huang*, Silva, Singh. Multiscale community detection with pointwise mutual information. Ongoing.
7Arriola, Kosan, Huang, Singh. Multiscale anomaly detection with graph autoencoders. Ongoing.
8Huang. Graph-based Fraud Detection in Kindle Direct Publishing. Amazon internship report.
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Introduction Outline

Outline

1. Introduction

2. Representation learning for multiscale graphs

3. Representation learning for signed graphs

4. Representation learning for attributed graphs

5. Conclusions and plan
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Multiscale graphs Random-walk embedding

1. Introduction

2. Representation learning for multiscale graphs
2.1 A broader picture of random-walk based graph embedding
2.2 Multiscale community detection with pointwise mutual information
2.3 Multiscale anomaly detection with graph autoencoders

3. Representation learning for signed graphs

4. Representation learning for attributed graphs

5. Conclusions and plan
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Multiscale graphs Random-walk embedding

An unified framework for random-walk based embedding1

Random-walk based embedding methods
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I We provide key insights on how embedding captures structural scales.
I We find that Autocovariance enables state-of-the-art link prediction.
1Huang, Silva, Singh. A broader picture of random-walk based graph embedding. KDD’21.
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Multiscale graphs Community detection

1. Introduction

2. Representation learning for multiscale graphs
2.1 A broader picture of random-walk based graph embedding
2.2 Multiscale community detection with pointwise mutual information
2.3 Multiscale anomaly detection with graph autoencoders

3. Representation learning for signed graphs

4. Representation learning for attributed graphs

5. Conclusions and plan
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Multiscale graphs Community detection

PMI-based multiscale community detection2

I Stability [1, 2]: multiscale
community detection based on
clustered autocovariance.

I Worse node-level performance.
I Needs to know the right scale.
I Assumes a shared structural scale

across different communities.
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Figure: PMI embedding outperforms
both methods based on autocovariance
in community detection.

2Kondapaneni*, Huang*, Silva, Singh. Multiscale community detection with pointwise mutual information. Ongoing.
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Multiscale graphs Community detection

Preliminary finding
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Figure: Multiscale community detection with PMI. (a) and (b) show that PMI identifies
ground-truth communities and reveals their structural scales (as the best Markov time).

Ongoing work
I Developing the theory behind the scale-revealing property of PMI.
I Designing algorithms that find communities of different scales (c).
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Multiscale graphs Anomalty detection

1. Introduction

2. Representation learning for multiscale graphs
2.1 A broader picture of random-walk based graph embedding
2.2 Multiscale community detection with pointwise mutual information
2.3 Multiscale anomaly detection with graph autoencoders

3. Representation learning for signed graphs

4. Representation learning for attributed graphs

5. Conclusions and plan
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Multiscale graphs Anomalty detection

Multiscale anomaly detection
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(a) Node-level anomalies
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(b) Subgraph-level anomalies

Figure: Real-world graphs have anomalies of different scales. Images from [3].

I Existing work focuses on node-level anomaly within a particular
context [4, 5] or multiscale contexts [3, 6].
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Multiscale graphs Anomalty detection

Multiscale graph autoencoder3

Anomaly 
score

1-hop Message
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Input 
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GAE
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Ongoing work
I Evaluating our model against baselines on multiple datasets.
3Arriola, Kosan, Huang, Singh. Multiscale anomaly detection with graph autoencoders. Ongoing.
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Signed graphs POLE

1. Introduction

2. Representation learning for multiscale graphs

3. Representation learning for signed graphs
3.1 Polarized embedding for signed networks

4. Representation learning for attributed graphs

5. Conclusions and plan
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Signed graphs POLE

Signed networks

Friendly ( ) Adversarial ( )

Can we predict future conflicts in signed networks to reduce
further polarization?
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Signed graphs POLE

Signed link prediction in polarized networks

I Predicting signs of links:
I Signed embedding [7, 8] (signed similarity)

I What about predicting link existence?
I Unsigned embedding [9, 10] (connectivity)

I However, they cannot predict negative links between
polarized communities!

I Because topology and link signs are interdependent
I Need to capture signed/unsigned similarities jointly

Intra-community: dense, positive
Inter-community: sparse, negative
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Signed graphs POLE

POLE: polarized embedding4

I Signed random-walks to capture both similarities:

Muv(t) =
∑

all length-t paths l between u and v

Prob(l)Sign(l)

I POLE: extends autocovariance similarity [11, 12] to signed RW

R(t) = M(t)TWM(t)

I Desired properties:
I Positive links: large positive similarity;
I Negative links: large negative similarity;
I Non-links: small similarity.

4Huang, Silva, Singh. POLE: Polarized embedding for signed networks. WSDM’22.
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Signed graphs POLE

Comparison of similarity distributions
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Figure: Distributions of the reconstructed similarity for different types of node pairs in a
polarized graph using (a) unsigned [12], (b) signed [13], and (c) polarized embedding.
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Signed graphs POLE

Signed link prediction results
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Figure: Signed link prediction with link existence information performance comparison.
POLE outperforms all baselines in almost all datasets, especially for the negative links.
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Attributed graphs GND-Nets

1. Introduction

2. Representation learning for multiscale graphs

3. Representation learning for signed graphs
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Graph neural diffusion network5

I Message-passing as graph diffusions:

u(K) =
K−1∑
k=0

αkM
ku(0)

I Existing work [16, 17] adopts fixed diffusion weights αk.

I We propose to learn the diffusion weights directly from data:

u(K) = f([u(0);Mu(0); ...;MK−1u(0)]; θ)

I Key result: The learned weights are adaptable to different datasets,
leading to better semi-supervised node classification performance.

5Ye, Huang, Hong, Singh. Graph convolutional networks meet neural diffusions. Under review.
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GNNs for link prediction
I GNNs have become the predominant tool for link prediction:

I LGCN (WebConf’21), TLC-GNN (ICML’21), Neo-GNN (NeurIPS’21),
NBFNet (NeurIPS’21), BScNets (AAAI’22), WalkPool (ICLR’22)
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(a) Input attributed graph (b) GNN message-passing (c) Pooling and classification

I Advantages over topological heuristics (e.g., Common Neighbors):
I Potential to discover new heuristics via supervised learning.
I Natural incorporation of node attribute information.
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An imbalanced classification problem

Table: Common real-world datasets for link prediction benchmark.

#Nodes #Edges Avg. degree Density Class ratio

Cora 2,708 5,278 3.90 0.14% 1:695
CiteSeer 3,327 4,552 2.74 0.08% 1:1216
PubMed 19,717 44,324 4.50 0.02% 1:4385
Photo 7,650 119,081 31.13 0.41% 1:246

Computers 13,752 245,861 35.76 0.26% 1:385

Have GNN-based link prediction methods properly addressed
the intrinsic class imbalance?

Zexi Huang Graph Representation Learning June 2, 2022 26 / 53



Attributed graphs Gelato

An imbalanced classification problem

Table: Common real-world datasets for link prediction benchmark.

#Nodes #Edges Avg. degree Density Class ratio

Cora 2,708 5,278 3.90 0.14% 1:695
CiteSeer 3,327 4,552 2.74 0.08% 1:1216
PubMed 19,717 44,324 4.50 0.02% 1:4385
Photo 7,650 119,081 31.13 0.41% 1:246

Computers 13,752 245,861 35.76 0.26% 1:385

Have GNN-based link prediction methods properly addressed
the intrinsic class imbalance?

Zexi Huang Graph Representation Learning June 2, 2022 26 / 53



Attributed graphs Gelato

A task for the graph topology
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Figure: The attribute-centric message-passing mechanism is effective for tasks on the
topology, e.g., node classification. Link prediction, however, is a task for the topology.

Are there better alternatives to message-passing for combining
node attributes and graph topology for link prediction?
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Supervised link prediction evaluation
I Existing work [18, 19, 20, 21, 22, 23, 24, 25, 26] adopts AUC and AP

with biased testing (downsampling negative/disconnected pairs).

Example: A bad link prediction model that predicts 1M false positives (1k with biased
testing) higher than the 100k true edges achieves 0.99 in both AUC and AP.
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Supervised link prediction evaluation
I Existing work [18, 19, 20, 21, 22, 23, 24, 25, 26] adopts AUC and AP

with biased testing (downsampling negative/disconnected pairs),
which pictures an overly optimistic view of model performance.

I We argue for the use of precision@k [27] with full testing, which has
been widely applied in unsupervised link prediction [28, 29, 12] and IR.

Supervised link prediction training
I Existing work uses binary cross entropy loss with biased training.

I It discards potentially useful evidence from negative pairs.
I It induces the model to overestimate the probability of positive pairs.
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Gelato: a simpler, more effective, and faster alternative5

5/21/22, 10:15 PM overview, label free.svg

file:///E:/Synchronized_Files/Codes/LaTeX/NeurIPS22/fig/overview/overview, label free.svg 1/1

5Huang, Kosan, Silva, Singh. Link prediction without graph neural networks. Under review.
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5/30/22, 11:28 PM overview, label free, gl.svg

file:///E:/Synchronized_Files/Codes/LaTeX/Proposal/working/fig/gelato/overview, label free, gl.svg 1/1

Graph learning

I Graph augmentation: Ẽ = E + {(u, v) | s(xu, xv) > sη}
I Trained weighting: wuv = MLP([xu + xv; |xu − xv|]; θ)
I Combined weights: Ãuv = αAuv +(1−α)(βwuv +(1−β)s(xu, xv))
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5/30/22, 11:32 PM overview, label free, th.svg

file:///E:/Synchronized_Files/Codes/LaTeX/Proposal/working/fig/gelato/overview, label free, th.svg 1/1

Topological heuristic
I Applying Autocovariance [1, 12] to the enhanced graph Ã:

R =
D̃

vol(G̃)
(D̃−1Ã)t − d̃d̃T

vol2(G̃)
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5/30/22, 11:34 PM overview, label free, np.svg

file:///E:/Synchronized_Files/Codes/LaTeX/Proposal/working/fig/gelato/overview, label free, np.svg 1/1

N-pair loss [30]
I Contrasting each positive edge (u, v) with a set of negative pairs

N(u, v) whose size equals to the class ratio (full training):

L(θ) = −
∑

(u,v)∈E

log
exp(Ruv)

exp(Ruv) +
∑

(p,q)∈N(u,v) exp(Rpq)
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Baselines
I GNN-based methods:

I GAE [18], SEAL [19], HGCN [20], LGCN [21], TLC-GNN [23], Neo-GNN
[31], NBFNet [24], BScNets [25], and WalkPool [26]

I Topological heuristics:
I Common Neighbors (CN) [32], Adamic Adar (AA) [33], Resource

Allocation (RA) [34], and Autocovariance (AC) [12]
I Two-stage methods of combining attributes and topology:

I MLP, Cos, MLP+AC, Cos+AC, MLP+Cos+AC
Evaluation metric
I Precision@k under full testing for different values of k in terms of

the ratio of testing edges
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Table: Link prediction performance comparison (mean ± std precision@100%). Gelato
outperforms the best GNN-based method, Neo-GNN, by 88% and AC by 36%.

∗ Run only once as each run takes ~100 hrs; *** Each run takes >1000 hrs; OOM: Out Of Memory. .
Cora CiteSeer PubMed Photo Computers

GNN

GAE 3.33 ± 0.53 3.93 ± 0.47 2.58 ± 0.19 12.76 ± 0.30 10.81 ± 0.14
SEAL 6.11 ± 1.16 3.12 ± 2.03 *** 17.11 ± 1.01 13.09*
HGCN 3.47 ± 0.42 3.56 ± 0.59 2.39 ± 0.10 7.19 ± 0.47 5.73 ± 0.27
LGCN 4.74 ± 0.31 3.47 ± 0.54 2.73 ± 0.12 8.20 ± 0.26 4.74 ± 0.18

TLC-GNN 0.78 ± 0.45 0.70 ± 0.51 OOM 1.80 ± 0.54 OOM
Neo-GNN 6.79 ± 1.79 5.67 ± 1.27 5.41 ± 0.46 19.09 ± 1.62 13.93*
NBFNet 4.59 ± 0.67 2.29 ± 0.51 *** 20.41 ± 1.48 ***
BScNets 0.59 ± 0.30 0.44 ± 0.33 0.58 ± 0.36 3.04 ± 0.40 1.67 ± 0.19
WalkPool 5.29 ± 0.30 4.44 ± 0.31 4.42* OOM OOM

Topological
Heuristics

CN 4.36 ± 0.00 4.40 ± 0.00 2.37 ± 0.00 16.04 ± 0.00 13.39 ± 0.00
AA 7.40 ± 0.00 4.40 ± 0.00 3.32 ± 0.00 18.37 ± 0.00 14.71 ± 0.00
RA 7.21 ± 0.00 4.18 ± 0.00 2.10 ± 0.00 19.37 ± 0.00 15.22 ± 0.00
AC 8.16 ± 0.00 8.35 ± 0.00 8.33 ± 0.00 24.40 ± 0.00 19.78 ± 0.00

Attributes +
Topology

MLP 4.99 ± 1.10 3.45 ± 1.16 0.95 ± 0.35 3.73 ± 0.78 1.64 ± 0.76
Cos 3.23 ± 0.00 8.35 ± 0.00 0.50 ± 0.00 0.43 ± 0.00 0.33 ± 0.00

MLP+AC 8.60 ± 0.25 5.71 ± 0.37 8.57 ± 0.13 23.62 ± 0.22 19.39 ± 0.17
Cos+AC 11.01 ± 0.00 12.53 ± 0.00 0.65 ± 0.00 16.94 ± 0.00 8.46 ± 0.00

MLP+Cos+AC 8.88 ± 0.23 11.67 ± 0.79 0.81 ± 0.10 18.47 ± 0.16 9.65 ± 0.25

Gelato 11.67 ± 0.30 13.43 ± 0.22 9.35 ± 0.16 32.13 ± 0.45 26.68 ± 0.19
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Link prediction results (cont.)
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Figure: Link prediction performance in terms of precision@k with k ranging from 10%
to 100%. With few exceptions, Gelato outperforms the baselines across different k.
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Attributed graphs Gelato
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Figure: Illustration of the link prediction process of Gelato on a subgraph of Photo.
Zexi Huang Graph Representation Learning June 2, 2022 37 / 53



Attributed graphs Gelato

0 40 80 120 160
0

40

80

120

160

Edge Nonedge

(a) Train adj.

0 40 80 120 160
0

40

80

120

160

0 5 10 15 20 25

(b) Attribute dist.

0 40 80 120 160
0

40

80

120

160

0.0 0.1 0.2 0.3 0.4 0.5

(c) Enhanced adj.

0 40 80 120 160
0

40

80

120

160

0 5 10 15 20 25 30

(d) AC scores

0 40 80 120 160
0

40

80

120

160

0 5 10 15 20 25 30

(e) Gelato scores
0 40 80 120 160

0

40

80

120

160

True positive False positive

(f) AC edges

0 40 80 120 160
0

40

80

120

160

True positive False positive

(g) Gelato edges

0 40 80 120 160
0

40

80

120

160

0.995 0.996 0.997 0.998 0.999 1.000

(h) Neo-GNN pred

0 40 80 120 160
0

40

80

120

160

True positive False positive

(i) Neo-GNN edges

Figure: Illustration of the link prediction process of Gelato on a subgraph of Photo.
Zexi Huang Graph Representation Learning June 2, 2022 37 / 53



Attributed graphs Gelato

0 40 80 120 160
0

40

80

120

160

Edge Nonedge

(a) Train adj.

0 40 80 120 160
0

40

80

120

160

0 5 10 15 20 25

(b) Attribute dist.

0 40 80 120 160
0

40

80

120

160

0.0 0.1 0.2 0.3 0.4 0.5

(c) Enhanced adj.

0 40 80 120 160
0

40

80

120

160

0 5 10 15 20 25 30

(d) AC scores

0 40 80 120 160
0

40

80

120

160

0 5 10 15 20 25 30

(e) Gelato scores

0 40 80 120 160
0

40

80

120

160

True positive False positive

(f) AC edges

0 40 80 120 160
0

40

80

120

160

True positive False positive

(g) Gelato edges

0 40 80 120 160
0

40

80

120

160

0.995 0.996 0.997 0.998 0.999 1.000

(h) Neo-GNN pred

0 40 80 120 160
0

40

80

120

160

True positive False positive

(i) Neo-GNN edges

Figure: Illustration of the link prediction process of Gelato on a subgraph of Photo.
Zexi Huang Graph Representation Learning June 2, 2022 37 / 53



Attributed graphs Gelato

0 40 80 120 160
0

40

80

120

160

Edge Nonedge

(a) Train adj.

0 40 80 120 160
0

40

80

120

160

0 5 10 15 20 25

(b) Attribute dist.

0 40 80 120 160
0

40

80

120

160

0.0 0.1 0.2 0.3 0.4 0.5

(c) Enhanced adj.

0 40 80 120 160
0

40

80

120

160

0 5 10 15 20 25 30

(d) AC scores

0 40 80 120 160
0

40

80

120

160

0 5 10 15 20 25 30

(e) Gelato scores
0 40 80 120 160

0

40

80

120

160

True positive False positive

(f) AC edges

0 40 80 120 160
0

40

80

120

160

True positive False positive

(g) Gelato edges

0 40 80 120 160
0

40

80

120

160

0.995 0.996 0.997 0.998 0.999 1.000

(h) Neo-GNN pred

0 40 80 120 160
0

40

80

120

160

True positive False positive

(i) Neo-GNN edges

Figure: Illustration of the link prediction process of Gelato on a subgraph of Photo.
Zexi Huang Graph Representation Learning June 2, 2022 37 / 53



Attributed graphs Gelato

0 40 80 120 160
0

40

80

120

160

Edge Nonedge

(a) Train adj.

0 40 80 120 160
0

40

80

120

160

0 5 10 15 20 25

(b) Attribute dist.

0 40 80 120 160
0

40

80

120

160

0.0 0.1 0.2 0.3 0.4 0.5

(c) Enhanced adj.

0 40 80 120 160
0

40

80

120

160

0 5 10 15 20 25 30

(d) AC scores

0 40 80 120 160
0

40

80

120

160

0 5 10 15 20 25 30

(e) Gelato scores
0 40 80 120 160

0

40

80

120

160

True positive False positive

(f) AC edges

0 40 80 120 160
0

40

80

120

160

True positive False positive

(g) Gelato edges

0 40 80 120 160
0

40

80

120

160

0.995 0.996 0.997 0.998 0.999 1.000

(h) Neo-GNN pred

0 40 80 120 160
0

40

80

120

160

True positive False positive

(i) Neo-GNN edges
Figure: Illustration of the link prediction process of Gelato on a subgraph of Photo.

Zexi Huang Graph Representation Learning June 2, 2022 37 / 53



Attributed graphs Gelato

Comparing loss and training setting
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Figure: Compared with the cross entropy loss, the N-pair loss with full training is a
more consistent proxy for precision at the top and leads to better peak performance.
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Attributed graphs Gelato

Running time comparison
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Figure: Even under full training, Gelato has competitive training time (11× compared
to Neo-GNN) and is significantly faster than most baselines for inference (6,000×).
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Attributed graphs Gelato

This work investigates key questions regarding the training,
evaluation, and ability of GNNs to effectively combine attributes
and topology for link prediction.

Contributions:
I Identify limitations of existing methods in addressing class imbalance.
I Introduce a simpler, more accurate, and more efficient alternative.
I Propose the use of N-pair loss with full training for link prediction.
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Attributed graphs GCFExplainer

1. Introduction

2. Representation learning for multiscale graphs

3. Representation learning for signed graphs

4. Representation learning for attributed graphs
4.1 Graph convolutional networks meet neural diffusions
4.2 Link prediction without graph neural networks
4.3 Global counterfactual explainer for graph neural networks

5. Conclusions and plan
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Attributed graphs GCFExplainer

Model understanding and explanation

I Deep predictive model {Foreigner=True, Num_Loans=1,
Missed_Payments=2} ⇒ Denied

I Feature importance [35, 36]
Foreigner

Num_Loans

Missed_Payments
Importance

I Local counterfactual [37, 38] {Foreigner=True, Num_Loans=1,
Missed_Payments=1} ⇒ Approved

I Global counterfactual [39] If Foreigner=True and Num_Loans≥1
then Missed_Payments≤1
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Attributed graphs GCFExplainer

Understanding GNNs

I Graph classification GNN CH

O

H

Formaldehyde

Mutagen

I Subgraph importance [40, 41] CH

O

H

Formaldehyde

Important subgraph

I Local counterfactual [42, 43] CH

O

O

Formic acid

Non-mutagen
H

Can we generate global counterfactual explanation for GNNs?
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Attributed graphs GCFExplainer

Global counterfactual explanation for GNNs7

I Global recourse: For any undesired graph G ∈ G (GNN(G) = 0),
the explanation r should provide a recourse: GNN(r(G)) = 1.

I Interpretable: r should be (much) easier to understand (than GNN).

Explanation based on counterfactual summary
I Represent r with a set C of counterfactual summary graphs.
I The recourse for G is given as the minimal cost summary graph:

rC(G) = argmin
C∈C

cost(G,C)

where cost(·, ·) is any distance metric between graphs (e.g., GED).

7Huang*, Kosan*, et al. GCFExplainer: Global counterfactual explainer for graph neural networks. Ongoing.
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Attributed graphs GCFExplainer

Quantifying explanation quality
I Cost: minimize the overall recourse cost for all undesired graphs:

cost(rC) =
∑
G∈G

min
C∈C

cost(G,C)

I Coverage: maximize the number of undesired graphs that have an
actionable recourse (i.e., within a cost budget B):

cover(rC) = |{G ∈ G | min
C∈C

cost(G,C) ≤ B}|

I Interpretability: minimize the size of the counterfactual summary:

size(rC) = |C|

How can we find a good set of counterfactual summary graphs?
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Attributed graphs GCFExplainer

Structuring counterfactual summary search space

I Graph edit map: A (meta)graph of
candidate summary graphs connected
by single graph edits.

Node/edge addition

Node/edge 
removal Node label change

Generating diverse counterfactual summary
I Vertex-reinforced random-walk [44]: Prob(g → g′) ∝ N(g′)I(g′).

Converges to diverse (representative), important nodes [45, 46].
I Importance function I(g): counterfactual probability GNN(g),

individual cost cost(r{g}), and individual coverage cover(r{g}).
I Teleportation to undesired graphs: manages the exponential search

space, increases convergence rate with adaptive probability.
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Attributed graphs GCFExplainer

Dataset
I Mutagenicity [47]: A collection of 3,000 molecules classified into

two categories: mutagen and non-mutagen (desired).

Baselines
I Ground-truth desired graphs in the dataset + Greedy summary
I Local counterfactuals from RCExplainer [42] + Greedy summary

Evaluation metrics
I cost(rC) for different size(rC)
I cover(rC) for different size(rC)
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Attributed graphs GCFExplainer

Comparison with summary of local counterfactuals
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Figure: Global counterfactual quality comparison. GCFExplainer consistently
outperforms the baselines with 30% less recourse cost and 2× coverage percentage.
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Attributed graphs GCFExplainer

Visualizing global counterfactuals
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Figure: Visualization of local and global counterfactuals. The global counterfactual
provides a high-level picture of the recourse for the undesired molecules.
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Attributed graphs GCFExplainer

Contributions
I We present GCFExplainer, the first global counterfactual explainer

for GNNs based on vertex-reinforced random-walks.
I We demonstrate the effectiveness and usefulness of GCFExplainer

in providing high-level recourse for GNN-based graph classification.

Ongoing work
I Improving the scalability of the algorithm.
I Finding a more consistent proxy of graph edit distance.
I Comparing with more baselines on more datasets.
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Conclusions and plan

1. Introduction

2. Representation learning for multiscale graphs

3. Representation learning for signed graphs

4. Representation learning for attributed graphs

5. Conclusions and plan
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Conclusions and plan

Graph representation learning leads to new state-of-the-art
results for many graph-based applications. We have overviewed
our progress towards advancing it, which will form this thesis.

       
Multiscale graphs [1, 3, 6, 7]


Signed graphs [2]


Attributed graphs [3, 4, 5, 7, 8]


Heterogeneous graph [8]


Graph
Representation

Learning

Information-rich
Graphs

       

Node classification [1, 3]


Link prediction [1, 2, 4]


Community detection [1, 6]


Measuring polarization [2]


Applications

Counterfactual explanation [5]


Anomaly detection [7, 8]
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Conclusions and plan

Plan

Sep/22: Finish paper on counterfactual explanation

Dec/22: Finish paper on PMI clustering

Mar/23: Finish paper on anomaly detection

June/23: Thesis defense
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Backup Random-walk embedding
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Backup Random-walk embedding

Research papers
I [9] DeepWalk: online learning of social representations
I [10] node2vec: scalable feature learning for networks
I ... (with many more items omitted)
I [48] InfiniteWalk: deep network embeddings as ...
I [49] Node proximity is all you need: ...

Surveys
I [50]Representation learning on graphs: methods and applications
I ...
I [51]Machine learning on graphs: a model and comprehensive taxonomy

Difficult to compare existing methods and to design novel ones
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Backup Random-walk embedding

Question: link prediction

(a) Dot product
[28, 52, 29]

+

(b) Classification based on combined embeddings
[10, 53, 13]

How should embeddings be used for link prediction?
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Backup Random-walk embedding

Question: multiscale

(a) Random-walks capture
multiple structural scales [1]

Random‐walk scale

Pe
rf
or
m
an
ce

(b) Embedding performance [10]
insensitve to random-walk scales

How do embeddings capture different structural scales?
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Backup Random-walk embedding

Random-walk process

M : transition matrix π,Π: stationary distribution

Random-walk based embedding methods

DeepWalk, LINE
Multiscale, NetMF

NetSMF, InfiniteWalk

Standard

node2vec, APP
NetMF, NERD

Non-standard

Pr
oc

es
s
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Backup Random-walk embedding

Similarity metric

PMI1: R = log(ΠM τ)− log(ππT )
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1[54] Levy and Goldberg. Neural word embedding as implicit matrix factorization. NeurIPS’14.

2[1] Delvenne, Yalikari, and Barahona. Stability of graph communities across time scales. PNAS’10.
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Backup Random-walk embedding

Similarity metric

PMI1: R = log(ΠM τ)− log(ππT ) Autocovariance2: R = ΠM τ − ππT

Random-walk based embedding methods

DeepWalk, LINE
NetMF, NetSMF

InfiniteWalk

PMI

Multiscale

Autocovariance

Standard

node2vec, APP
NetMF, NERD
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1[54] Levy and Goldberg. Neural word embedding as implicit matrix factorization. NeurIPS’14.
2[1] Delvenne et al. Stability of graph communities across time scales. PNAS’10.
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Backup Random-walk embedding

Embedding algorithm

Explicit: Factorization (SVD)
min‖UUT −R‖2F

Implicit: Sampling (SGD)
max

∑
u,v log Pr((u, v) ∈ D|uu,vv)

Random-walk based embedding methods

DeepWalk
LINE

Sampling

NetMF
NetSMF

InfiniteWalk

Factorization

PMI

?

Sampling

Multiscale

Factorization

Autocovariance

Standard

node2vec
APP
NERD

Sampling

NetMF

Factorization

PMI

?

Sampling

?

Factorization

Autocovariance

Non-standard

A
lg
or
ith

m
Si
m
ila
rit
y
Pr
oc
es
s
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Backup Random-walk embedding

Datasets

|V| |E| labels

BlogCatalog 10,312 333,983 interests
Airport 3,158 18,606 countries/continents

Wiki-words 4,777 92,157 tags
PoliticalBlogs 1,222 16,717 ideologies

Downstream tasks
I Node classification (Micro/Macro-F1)
I Link prediction (precision@k)
I Community detection (NMI)

Embedding dimension = 128
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Backup Random-walk embedding

Comparing similarity metrics: node classification

PMI: R = log(ΠM τ)− log(ππT ) Autocovariance: R = ΠM τ − ππT
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Figure: PMI consistently outperforms autocovariance in node classification.
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Backup Random-walk embedding

Comparing similarity metrics: link prediction

PMI: R = log(ΠM τ)− log(ππT ) Autocovariance: R = ΠM τ − ππT
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Figure: Autocovariance with dot product ranking consistently outperforms PMI (with
either ranking scheme) in link prediction.
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Backup Random-walk embedding

Understanding the difference

predicted degree ∝ embedding norm ‖u‖

∝

{
actual degree for autocov.
constant for PMI

Autocovariance captures heterogeneous degree distribution in graphs!

Figure: Autocovariance embedding norms correlate with actual degrees, but not PMI.
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Backup Random-walk embedding

Understanding the difference

predicted degree ∝ embedding norm ‖u‖ ∝

{
actual degree for autocov.
constant for PMI

(a) PMI (b) Autocovariance

Figure: Autocovariance predicts more edges connecting to the hubs than PMI.
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Backup Random-walk embedding

Multiscale

PMI: R = log(ΠM τ)− log(ππT )
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Figure: Node classification performance for
PMI can be improved by smooth-averaging
across multiple Markov times.

Autocovariance: R = ΠM τ − ππT
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Figure: Prediction of edges of specific
structural scales can be improved with
different Markov times for autocovariance.
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Backup Random-walk embedding

Multiscale

PMI: R̃ = log(Π 1
τ

∑τ
t=1M

t)− log(ππT )
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Backup Random-walk embedding

Multiscale
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Backup Random-walk embedding

Problems:
1. How can one compare existing methods and to advance the SOTA?
2. How should embeddings be used for link prediction?
3. How do embeddings capture different structural scales?

Contributions:
1. A unified view of different processes, similarities, and algorithms.
2. Autocovariance embedding is significantly better for link prediction.
3. Ways to exploit multiscale similarity for optimized performance.
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Backup POLE

Social polarization
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Backup POLE

Signed random walk

I Unsigned RW: |M |uv(t) =
∑

all length-t paths l between u and v Prob(l)
I Prob(l) captures the unsigned similarity.

I Signed RW: Muv(t) =
∑

all length-t paths l between u and v Prob(l)Sign(l)
I Sign(l) based on the social balance theory captures the signed similarity.

– +
Prob(𝑙)

– –

Sign(𝑙)1/2 1/2

1/2 1/2

1/2 × 1/2 = 1/4

1/2 × 1/2 = 1/4

−1 × 1 = −1

−1 × −1 = 1
1

2

4

3

5

𝑙

1, 2, 3

1, 4, 5

Zexi Huang Graph Representation Learning June 2, 2022 70 / 53



Backup POLE

Signed random walk

I Unsigned RW: |M |uv(t) =
∑

all length-t paths l between u and v Prob(l)
I Prob(l) captures the unsigned similarity.

I Signed RW: Muv(t) =
∑

all length-t paths l between u and v Prob(l)Sign(l)
I Sign(l) based on the social balance theory captures the signed similarity.

– +
Prob(𝑙)

– –

Sign(𝑙)1/2 1/2

1/2 1/2

1/2 × 1/2 = 1/4

1/2 × 1/2 = 1/4

−1 × 1 = −1

−1 × −1 = 1
1

2

4

3

5

𝑙

1, 2, 3

1, 4, 5

Zexi Huang Graph Representation Learning June 2, 2022 70 / 53



Backup POLE

Signed random walk

I Unsigned RW: |M |uv(t) =
∑

all length-t paths l between u and v Prob(l)
I Prob(l) captures the unsigned similarity.

I Signed RW: Muv(t) =
∑

all length-t paths l between u and v Prob(l)Sign(l)
I Sign(l) based on the social balance theory captures the signed similarity.

– +
Prob(𝑙)

– –

Sign(𝑙)1/2 1/2

1/2 1/2

1/2 × 1/2 = 1/4

1/2 × 1/2 = 1/4

−1 × 1 = −1

−1 × −1 = 1
1

2

4

3

5

𝑙

1, 2, 3

1, 4, 5

Zexi Huang Graph Representation Learning June 2, 2022 70 / 53



Backup POLE

Measuring polarization

I |M |:u(t) and M:u(t) are highly correlated if u is polarized.
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I Pol(u; t) = corr(|M |:u(t),M:u(t)), Pol(G; t) = meanu∈G(Pol(u; t)).
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Backup POLE

Datasets:

|V| |E| |E−|/|E|

Congress 219 523 20.46%
WoW-EP8 789 116,009 18.63%

Bitcoin-Alpha 3,772 14,077 9.31%
Bitcoin-OTC 5,872 21,431 14.71%
Referendum 10,864 251,396 5.09%

Wiki-RfA 11,275 169,925 22.04%

Baselines: SiNE [55], SIGNet [56], SIDE [7], BESIDE [8], SLF [57], ROSE [13]
Signed link prediction setting:
I POLE: compute dot product similarity
I Baselines: train two classifiers (positive/negative vs non-links)
I Evaluation metric: positive/negative precision@k
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Backup POLE

Signed link prediction without link existence information
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Figure: Signed link prediction performance comparison between POLE and baselines
without link existence information. POLE outperforms all baselines in almost all
datasets, especially for the polarized ones.
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Backup POLE

Interaction between unsigned and signed similarity

Figure: Scatter plot of the reconstructed signed and unsigned similarity for different
node pairs in signed link prediction. Combining signed and unsigned similarity improves
prediction for negative links but has a negligible effect on predicting positive links.
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Backup POLE

Measuring polarization

Table: Ten least polarized congresspeople
by our RW-based polarization measure.

Congressperson State Party Score

Henry Cuellar* Texas D -0.6542
Jane Harman† California D -0.5376
Curt Weldon Pennsylvania R -0.4381

Dutch Ruppersberger Maryland D -0.4318
Jim Moran Virginia D -0.3832
Dave Obey Wisconsin D -0.3588

Wayne Gilchrest Maryland R -0.3503
Duke Cunningham California R -0.3248

Al Edwards Texas D -0.3063
Lincoln Davis Tennessee D -0.2901

* “Voted with President Trump 75% of time” — 538
† “Best Republican in the Democratic Party” — LA Times

Figure: Polarization and social balance of
real-world graphs and LFR benchmarks.
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Backup GND-Nets

Simple Graph Convolution1:

H(k) = σ(M̃kXΘ)

H(k): kth order embedding, X: node attributes, Θ: trainable weights
M̃ : random-walk transition with added self-loops
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Figure: Visualization of embedding without training for Cora. Colors denote actual
classes. A good choice of neighborhood helps reveal the cluster structure.

1Wu et al. Simplifying graph convolutional networks. ICML’19.
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Backup GND-Nets

Node classification results
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(b) Pubmed
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Figure: Semi-supervised node classification performance. Our method (GND-Nets)
outperforms baselines for various number of labeled nodes across the datasets.
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Backup GND-Nets

Learned diffusion weights
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(c) Chameleon
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(d) Squirrel

Figure: Mean diffusion weights (over 30 splits) across different datasets. Note that
Cora and Pubmed have larger weights for high-order neighborhoods compared to
Chameleon and Squirrel.
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