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Introduction Representation learning

Representation learning: extract useful information from data

For images:

» e.g., convolutional neural networks (CNNs)
For text:

> e.g., skip-gram, transformers
For graphs:

» node embedding

» graph neural networks (GNNs)

Applications: social network analysis (node classification and community
detection), product recommendation (link prediction), fraud detection
(anomaly detection), drug discovery (graph classification), ...
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Information-rich graphs
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Introduction My research

My research

Heterogeneous graph Counterfactual explanation

Information-rich Applications
Graphs [ Node classification ]
[ Multiscale graphs ] Graph ] [ Link prediction ]
[ Signed graphs ] » Representation » [ Community detection ]
[ Attributed graphs ] Learning [ Measuring polarization ]
[ J [ |
[ |

Anomaly detection
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Introduction

Information-rich Applications

Graphs [ Node classification [1, 3] ]
| Multiscale graphs [1. 2. 6. 7] | Graph ) | Linkprediction 1,2 4] |
([ Sionedgraphsizl | Represerttatlon | Community detection [1. ] |
[Attributed graphs [3, 4, 5, 7, 8]] Learning [ Measudng.eolagzaticn 2] ]
[ Heterogeneous graph [8] ] %Counterfactual explanation [5]}

Anomaly detection [7, 8]

LHuang, Silva, Singh. A broader picture of random-walk based graph embedding. KDD'21.
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1Huang, Silva, Singh. A broader picture of random-walk based graph embedding. KDD'21.
2Huang, Silva, Singh. POLE: Polarized embedding for signed networks. WSDM'22.
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Information-rich Applications
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1Huang, Silva, Singh. A broader picture of random-walk based graph embedding. KDD'21.
2Huang, Silva, Singh. POLE: Polarized embedding for signed networks. WSDM'22.

3Ye, Huang, Hong, Singh. Graph convolutional networks meet neural diffusions. Under review.
“Huang, Kosan, Silva, Singh. Link prediction without graph neural networks. Under review.
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1Huang, Silva, Singh. A broader picture of random-walk based graph embedding. KDD'21.

2Huang, Silva, Singh. POLE: Polarized embedding for signed networks. WSDM'22.

3Ye, Huang, Hong, Singh. Graph convolutional networks meet neural diffusions. Under review.

4Huang, Kosan, Silva, Singh. Link prediction without graph neural networks. Under review.

5Huang*, Kosan*, et al. GCFExplainer: Global counterfactual explainer for graph neural networks. Ongoing.
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1Huang, Silva, Singh. A broader picture of random-walk based graph embedding. KDD'21.

2Huang, Silva, Singh. POLE: Polarized embedding for signed networks. WSDM'22.

3Ye, Huang, Hong, Singh. Graph convolutional networks meet neural diffusions. Under review.

4Huang, Kosan, Silva, Singh. Link prediction without graph neural networks. Under review.

5Huang*, Kosan*, et al. GCFExplainer: Global counterfactual explainer for graph neural networks. Ongoing.
5Kondapaneni*, Huang*, Silva, Singh. Multiscale community detection with pointwise mutual information. Ongoing.
" Arriola, Kosan, Huang, Singh. Multiscale anomaly detection with graph autoencoders. Ongoing.
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1Huang, Silva, Singh. A broader picture of random-walk based graph embedding. KDD'21.

2Huang, Silva, Singh. POLE: Polarized embedding for signed networks. WSDM'22.

3Ye, Huang, Hong, Singh. Graph convolutional networks meet neural diffusions. Under review.

4Huang, Kosan, Silva, Singh. Link prediction without graph neural networks. Under review.

SHuang*, Kosan*, et al. GCFExplainer: Global counterfactual explainer for graph neural networks. Ongoing.
%Kondapaneni*, Huang*, Silva, Singh. Multiscale community detection with pointwise mutual information. Ongoing.
" Arriola, Kosan, Huang, Singh. Multiscale anomaly detection with graph autoencoders. Ongoing.

8Huang. Graph-based Fraud Detection in Kindle Direct Publishing. Amazon internship report.
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2. Representation learning for multiscale graphs
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Multiscale graphs Random-walk embedding

2. Representation learning for multiscale graphs
2.1 A broader picture of random-walk based graph embedding

Zexi Huang Graph Representation Learning June 2, 2022 7/53



Multiscale graphs Random-walk embedding

An unified framework for random-walk based embedding’'

Random-walk based embedding methods

wn
4
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DeepWalk Multiscale APP NetMF
LINE I\.Ie'tSMF Our work Our work NERD  Our work Our work Our work
InfiniteWalk
Our work

» We provide key insights on how embedding captures structural scales.
» We find that Autocovariance enables state-of-the-art link prediction.

1Huang, Silva, Singh. A broader picture of random-walk based graph embedding. KDD'21.
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Multiscale graphs Community detection

2. Representation learning for multiscale graphs

2.2 Multiscale community detection with pointwise mutual information
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Multiscale graphs Community detection

PMI-based multiscale community detection?

v

v

Stability [1, 2]: multiscale
community detection based on
clustered autocovariance.

Worse node-level performance.
Needs to know the right scale.

Assumes a shared structural scale
across different communities.
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Figure: PMI embedding outperforms
both methods based on autocovariance
in community detection.

2Kondapaneni*, Huang*, Silva, Singh. Multiscale community detection with pointwise mutual information. Ongoing.

Zexi Huang

Graph Representation Learning

June 2, 2022 10/53



Multiscale graphs Community detection

Preliminary finding

—— 2 clusters —— 4 clusters
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(a) SBM-4,sizes=(50,50,50,50)
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(b) SBM-2,sizes=(100,100)

(c) SBM-4,sizes=(20,40,80,160)

Figure: Multiscale community detection with PMI. (a) and (b) show that PMI identifies
ground-truth communities and reveals their structural scales (as the best Markov time).

Ongoing work

» Developing the theory behind the scale-revealing property of PMI.
» Designing algorithms that find communities of different scales (c).
June2, 2022 11753



Multiscale graphs Anomalty detection

2. Representation learning for multiscale graphs

2.3 Multiscale anomaly detection with graph autoencoders
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\IMIEEEI B IEM  Anomalty detection

Multiscale anomaly detection
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(a) Node-level anomalies (b) Subgraph-level anomalies

Figure: Real-world graphs have anomalies of different scales. Images from [3].

» Existing work focuses on node-level anomaly within a particular
context [4, 5] or multiscale contexts [3, 6].
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Multiscale graphs Anomalty detection

Multiscale graph autoencoder?

_EE

Scale 1 Scale 2 Scale 3
GAE GAE GAE
1-hop Message 2-hop Message 3-hop Message

Passing Passing Passing

Multiscale % % %

GAE Attribute
+ ) # value
GRU GRU

Encoder Encoder Encoder
Decoder Decoder Decoder

‘ v '
= omow R
detection A:Z$:Iy
Ongoing work

» Evaluating our model against baselines on multiple datasets.

3Arriola, Kosan, Huang, Singh. Multiscale anomaly detection with graph autoencoders. Ongoing.
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3. Representation learning for signed graphs
3.1 Polarized embedding for signed networks
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Signed networks

Friendly (+) — Adversarial (=)
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Signed networks

Friendly (+)

Adversarial (—) ———

Can we predict future conflicts in signed networks to reduce
further polarization?

Zexi Huang Graph Representation Learning June 2, 2022

16 /53



Signed link prediction in polarized networks

» Predicting signs of links:
» Signed embedding [7, 8] (signed similarity)
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Signed link prediction in polarized networks

» Predicting signs of links:
» Signed embedding [7, 8] (signed similarity)

» What about predicting link existence?
» Unsigned embedding [9, 10] (connectivity)
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Signed link prediction in polarized networks

» Predicting signs of links:
» Signed embedding [7, 8] (signed similarity)

» What about predicting link existence?
» Unsigned embedding [9, 10] (connectivity)

» However, they cannot predict negative links between
polarized communities!

» Because topology and link signs are interdependent
» Need to capture signed/unsigned similarities jointly

Intra-community: dense, positive
Inter-community: sparse, negative
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ROtk
POLE: polarized embedding*

» Signed random-walks to capture both similarities:

M(t) = > Prob(1)Sign (1)

all length-t paths [ between u and v

» POLE: extends autocovariance similarity [11, 12] to signed RW

R(t) = M(t)TWM(t)

4Huang, Silva, Singh. POLE: Polarized embedding for signed networks. WSDM'22.
e 2, i
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ROtk
POLE: polarized embedding*

» Signed random-walks to capture both similarities:

M(t) = > Prob(1)Sign (1)

all length-t paths [ between u and v

» POLE: extends autocovariance similarity [11, 12] to signed RW

R(t) = M(t)TWM(t)

» Desired properties:
» Positive links: large positive similarity;
» Negative links: large negative similarity;

» Non-links: small similarity.
4Huang, Silva, Singh. POLE: Polarized embedding for signed networks. WSDM'22.
e 2, i
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Comparison of similarity distributions

(a) Unsigned embedding (RWE) (b) Signed embedding (ROSE) (c) Polarized embedding (POLE)
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Figure: Distributions of the reconstructed similarity for different types of node pairs in a
polarized graph using (a) unsigned [12], (b) signed [13], and (c) polarized embedding.

Zexi Huang Graph Representation Learning June 2, 2022 19/53



Comparison of similarity distributions

( (a) Unsigned embedding (RWE) h (b) Signed embedding (ROSE) (c) Polarized embedding (POLE)
3 41
3
> 31
£ 2
c 2
a 27
14
1 14
0+ 0 T T T 0 r T -
\__-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Normalized reconstructed similarity
[ Disconnected [ Negative [ Positive

Figure: Distributions of the reconstructed similarity for different types of node pairs in a
polarized graph using (a) unsigned [12], (b) signed [13], and (c) polarized embedding.

Zexi Huang Graph Representation Learning June 2, 2022 19/53



Comparison of similarity distributions

(a) Unsigned embedding (RWE) ( (b) Signed embedding (ROSE) (c) Polarized embedding (POLE)
3 41
3
> 31
£ 2
c 2
8 2
14
1 14
0+ 0 T T T 0 r T -
-1.0 -0.5 0.0 0.5 1.0\ -1.0 -0.5 0.0 0.5 1.0 J-1.0 -0.5 0.0 0.5 1.0

Normalized reconstructed similarity
[ Disconnected [ Negative [ Positive

Figure: Distributions of the reconstructed similarity for different types of node pairs in a
polarized graph using (a) unsigned [12], (b) signed [13], and (c) polarized embedding.

Zexi Huang Graph Representation Learning June 2, 2022 19/53



Comparison of similarity distributions

(a) Unsigned embedding (RWE) (b) Signed embedding (ROSE) ( (c) Polarized embedding (POLE) h
3 41
3
> 31
£ 2
c 2
8 2
14
1 14
0+ 0 T T T 0 r T -
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0\_-1.0 =0.5 0.0 0.5 1.0 J

Normalized reconstructed similarity
[ Disconnected [ Negative [ Positive

Figure: Distributions of the reconstructed similarity for different types of node pairs in a
polarized graph using (a) unsigned [12], (b) signed [13], and (c) polarized embedding.

Zexi Huang Graph Representation Learning June 2, 2022 19/53



Signed graphs POLE

Signed link prediction results
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Figure: Signed link prediction with link existence information performance comparison.
POLE outperforms all baselines in almost all datasets, especially for the negative links.
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Attributed graphs BE\[DENES

4. Representation learning for attributed graphs
4.1 Graph convolutional networks meet neural diffusions
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Attributed graphs BE\IPENES

Graph neural networks (GNNs) [14, 15]
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(a) Attributed graph (b) GNN computational graph
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Attributed graphs BE\IPENES

Graph neural networks (GNNs) [14, 15]
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(a) Attributed graph (b) GNN computational graph

How can we effectively leverage multi-hop neighborhood
information in GNNs?
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G
Graph neural diffusion network®
» Message-passing as graph diffusions:

K1
ulf) = Z ap MFu0)
k=0

» Existing work [16, 17] adopts fixed diffusion weights «.

5Ye, Huang, Hong, Singh. Graph convolutional networks meet neural diffusions. Under review.
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G2
Graph neural diffusion network®
» Message-passing as graph diffusions:

K1
ulf) = Z ap MFu0)
k=0

» Existing work [16, 17] adopts fixed diffusion weights «.
» We propose to learn the diffusion weights directly from data:

) = f([W: Mu: L ME0): )

» Key result: The learned weights are adaptable to different datasets,
leading to better semi-supervised node classification performance.

5Ye, Huang, Hong, Singh. Graph convolutional networks meet neural diffusions. Under review.
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Attributed graphs [NEEEL

4. Representation learning for attributed graphs

4.2 Link prediction without graph neural networks
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Attributed graphs [NEEEL

GNNs for link prediction
» GNNs have become the predominant tool for link prediction:

> LGCN (WebConf'21), TLC-GNN (ICML'21), Neo-GNN (NeurlPS'21),
NBFNet (NeurlPS'21), BScNets (AAAI'22), WalkPool (ICLR'22)

=T
-®7@ -® : j» 0/1
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(a) Input attributed graph (b) GNN message-passing (c) Pooling and classification
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GNNs for link prediction
» GNNs have become the predominant tool for link prediction:

> LGCN (WebConf'21), TLC-GNN (ICML'21), Neo-GNN (NeurlPS'21),
NBFNet (NeurlPS'21), BScNets (AAAI'22), WalkPool (ICLR'22)
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-.,;’ @”’// /(,’/
-@—--’—;:z mEnG
@

(a) Input attributed graph (b) GNN message-passing (c) Pooling and classification

» Advantages over topological heuristics (e.g., Common Neighbors):
» Potential to discover new heuristics via supervised learning.
» Natural incorporation of node attribute information.
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Attributed graphs [NEEEL

An imbalanced classification problem

Table: Common real-world datasets for link prediction benchmark.

#Nodes #Edges Avg. degree Density Class ratio

CORA 2,708 5,278 3.90 0.14% 1:695
CITESEER 3,327 4,552 2.74 0.08% 1:1216
PUBMED 19,717 44,324 4.50 0.02% 1:4385

Puoro 7,650 119,081 31.13 0.41% 1:246
COMPUTERS 13,752 245,861 35.76 0.26% 1:385
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Attributed graphs [NEEEL

An imbalanced classification problem

Table: Common real-world datasets for link prediction benchmark.

#Nodes #Edges Avg. degree Density Class ratio

CORA 2,708 5,278 3.90 0.14% 1:695
CITESEER 3,327 4,552 2.74 0.08% 1:1216
PUBMED 19,717 44,324 4.50 0.02% 1:4385

Puoro 7,650 119,081 31.13 0.41% 1:246
COMPUTERS 13,752 245,861 35.76 0.26% 1:385

Have GNN-based link prediction methods properly addressed
the intrinsic class imbalance?
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S
A task for the graph topology
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(a) GNN message-passing (b) Node classification (c) Link prediction

Figure: The attribute-centric message-passing mechanism is effective for tasks on the
topology, e.g., node classification. Link prediction, however, is a task for the topology.
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S
A task for the graph topology
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(a) GNN message-passing (b) Node classification (c) Link prediction

Figure: The attribute-centric message-passing mechanism is effective for tasks on the
topology, e.g., node classification. Link prediction, however, is a task for the topology.

Are there better alternatives to message-passing for combining
node attributes and graph topology for link prediction?
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Attributed graphs [NEEEL

Supervised link prediction evaluation
» Existing work [18, 19, 20, 21, 22, 23, 24, 25, 26] adopts AUC and AP

with biased testing (downsampling negative/disconnected pairs).
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Attributed graphs [NEEEL

Supervised link prediction evaluation

» Existing work [18, 19, 20, 21, 22, 23, 24, 25, 26] adopts AUC and AP
with biased testing (downsampling negative /disconnected pairs).

Example: A bad link prediction model that predicts 1M false positives (1k with biased
testing) higher than the 100k true edges achieves 0.99 in both AUC and AP.
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Attributed graphs [NEEEL

Supervised link prediction evaluation
» Existing work [18, 19, 20, 21, 22, 23, 24, 25, 26] adopts AUC and AP
with biased testing (downsampling negative/disconnected pairs),
which pictures an overly optimistic view of model performance.
» We argue for the use of precision@F [27] with full testing, which has
been widely applied in unsupervised link prediction [28, 29, 12] and IR.
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Attributed graphs [NEEEL

Supervised link prediction evaluation
» Existing work [18, 19, 20, 21, 22, 23, 24, 25, 26] adopts AUC and AP
with biased testing (downsampling negative/disconnected pairs),
which pictures an overly optimistic view of model performance.
» We argue for the use of precision@F [27] with full testing, which has
been widely applied in unsupervised link prediction [28, 29, 12] and IR.

Supervised link prediction training
» Existing work uses binary cross entropy loss with biased training.

» |t discards potentially useful evidence from negative pairs.
» |t induces the model to overestimate the probability of positive pairs.

Zexi Huang Graph Representation Learning June 2, 2022 29 /53



Attributed graphs [NEEEL

Gelato: a simpler, more effective, and faster alternative®

Input graph Enhanced graph Predicted links
0] (0]
g »0\0 o o | m |L(6)
‘ ) Graph learning\ ‘ ‘ To;;ological heur\istic ‘ ‘ { N-pair loss : }
uoI R(a,b) .;
WUV
vO

MLP(9)

Autocovariance R Link ranking

5Huang, Kosan, Silva, Singh. Link prediction without graph neural networks. Under review.
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Attributed graphs [NEEEL

Input graph Enhanced graph Predicted links
o 0]
Y O\o o o = L(6)

Graph learning ‘ Topological heuristic ‘ ‘ N-pair loss ‘
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u X

0 I WUV
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\ MLP(6) / Autocovariance R Link ranking

Graph learning
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Attributed graphs [NEEEL

Input graph Enhanced graph Predicted links
ImE QEEE O N Q (@)
[T
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Graph learning ‘ Topological heuristic ‘ ‘ N-pair loss ‘
R(a,b) @v
u X
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\ MLP(8) )/ Autocovariance R Link ranking

Graph learning
» Graph augmentation: E = E + {(u,v) | s(z,, z,) > Sp}
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Attributed graphs [NEEEL

Input graph Enhanced graph Predicted links
ImE QEEE O N Q (@)
[T
e . i I =» L(0)
Graph learning ‘ Topological heuristic ‘ ‘ N-pair loss ‘
R(a,b) @v

u X

0 I WLlV

vO

\ MLP(8) )/ Autocovariance R Link ranking

Graph learning
» Graph augmentation: E = E + {(u,v) | s(z,, z,) > Sp}
» Trained weighting: w,, = MLP([z, + z,; |z, — x,]]; 0)
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Attributed graphs [NEEEL

Input graph Enhanced graph Predicted links
ImE QEEE O N Q (0]
[T .
- 2y 0\0 o o I =» L(0)
(o ,",I ,"/ \\ ,",l ‘\‘\
Graph learning ‘ Topological heuristic ‘ ‘ N-pair loss ‘
b R(ab)@v
u X
O I WLIV
vO
\ MLP(8) )/ Autocovariance R Link ranking

Graph learning
» Graph augmentation: E = E + {(u,v) | s(z,, z,) > Sp}
» Trained weighting: w,, = MLP([x, + xy; |z, — x|]; 0)
» Combined weights: Ay, = al,. + (1 — a)(Bwu + (1 — B)s(z, 1,))
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Topological heuristic
» Applying Autocovariance [1, 12] to the enhanced graph A:
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N-pair loss [30]

» Contrasting each positive edge (u,v) with a set of
whose size equals to the class ratio (full training):

exp(Ruy)
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Baselines
» GNN-based methods:

> GAE [18], SEAL [19], HGCN [20], LGCN [21], TLC-GNN [23], Neo-GNN
[31], NBFNet [24], BScNets [25], and WalkPool [26]

» Topological heuristics:

» Common Neighbors (CN) [32], Adamic Adar (AA) [33], Resource
Allocation (RA) [34], and Autocovariance (AC) [12]

» Two-stage methods of combining attributes and topology:
» MLP, Cos, MLP+AC, Cos+AC, MLP+Cos+AC

Evaluation metric

» Precision@k under full testing for different values of k in terms of
the ratio of testing edges
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Table: Link prediction performance comparison (mean + std precision@100%). Gelato
outperforms the best GNN-based method, Neo-GNN, by 88% and AC by 36%.

* Run only once as each run takes ~100 hrs;

*** Each run takes >1000 hrs;

OOM: Out Of Memory.

CORA CITESEER PuBMED PHOTO COMPUTERS
GAE 3.33 £0.53 3.93 £+ 0.47 2,58 £+ 0.19 12.76 £+ 0.30 10.81 + 0.14
SEAL 6.11 + 1.16 3.12 + 2.03 *kk 17.11 £ 1.01 13.09"
HGCN 3.47 £ 0.42 3.56 + 0.59 2.39 + 0.10 7.19 + 0.47 5.73 £ 0.27
LGCN 4.74 £0.31 3.47 + 0.54 2.73 £ 0.12 8.20 + 0.26 474 £0.18
GNN TLC-GNN 0.78 £ 0.45 0.70 £ 0.51 OOM 1.80 + 0.54 OOM
Neo-GNN 6.79 £ 1.79 5.67 £ 1.27 5.41 + 0.46 19.09 + 1.62 13.93"
NBFNet 4.59 + 0.67 2.29 + 0.51 *okk 20.41 + 1.48 Fokk
BScNets 0.59 £ 0.30 0.44 £ 0.33 0.58 £ 0.36 3.04 £ 0.40 1.67 + 0.19
WalkPool 5.29 + 0.30 4.44 +0.31 4.42" OOM OOM
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BScNets 0.59 £ 0.30 0.44 £ 0.33 0.58 £ 0.36 3.04 £ 0.40 1.67 + 0.19
WalkPool 5.29 + 0.30 4.44 +0.31 4.42" OOM OOM
CN 4.36 + 0.00 4.40 £ 0.00 2.37 £ 0.00 16.04 £ 0.00 13.39 £ 0.00
Topological AA 7.40 £ 0.00 4.40 + 0.00 3.32 + 0.00 18.37 + 0.00 14.71 + 0.00
Heuristics RA 7.21 £+ 0.00 4.18 + 0.00 2.10 + 0.00 19.37 + 0.00 15.22 + 0.00
AC 8.16 £+ 0.00 8.35 £+ 0.00 8.33 £ 0.00 24.40 + 0.00 19.78 + 0.00
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AC 8.16 £+ 0.00 8.35 £+ 0.00 8.33 £ 0.00 24.40 + 0.00 19.78 + 0.00
MLP 499 + 1.10 3.45 + 1.16 0.95 £+ 0.35 3.73 £ 0.78 1.64 = 0.76
Cos 3.23 £ 0.00 8.35 £ 0.00 0.50 £ 0.00 0.43 £ 0.00 0.33 £ 0.00
Attributes + MLP+AC 8.60 £ 0.25 5.71 £ 0.37 8.57 £ 0.13 23.62 £+ 0.22 19.39 + 0.17
Topology Cos+AC 11.01 + 0.00 12.53 + 0.00 0.65 £ 0.00 16.94 + 0.00 8.46 + 0.00
MLP+Cos+AC 8.88 £ 0.23 11.67 £ 0.79 0.81 £ 0.10 18.47 £ 0.16 9.65 + 0.25
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Link prediction results (cont.)
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Figure: Link prediction performance in terms of precision@k with % ranging from 10%
to 100%. With few exceptions, Gelato outperforms the baselines across different k.

Zexi Huang Graph Representation Learning June 2, 2022 36 /53



Attributed graphs NEEEI)

W Edge [ Nonedge

(a) Train adj.  (b) Attribute dist.

Figure: lllustration of the link prediction process of Gelato on a subgraph of PHOTO.
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Figure: lllustration of the link prediction process of Gelato on a subgraph of PHOTO.
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Figure: lllustration of the link prediction process of Gelato on a subgraph of PHOTO.
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Comparing loss and training setting
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Figure: Compared with the cross entropy loss, the N-pair loss with full training is a
more consistent proxy for precision at the top and leads to better peak performance.
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Running time comparison

108

Time (s)
Time (s)
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(a) Training time until convergence

(b) Inference time per full testing

Figure: Even under full training, Gelato has competitive training time (11x compared
to Neo-GNN) and is significantly faster than most baselines for inference (6,000 ).

Zexi Huang Graph Representation Learning June 2, 2022 39/53



Attributed graphs [NEEEL

This work investigates key questions regarding the training,
evaluation, and ability of GNNs to effectively combine attributes
and topology for link prediction.

Contributions:
» Identify limitations of existing methods in addressing class imbalance.
» Introduce a simpler, more accurate, and more efficient alternative.
» Propose the use of N-pair loss with full training for link prediction.
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4. Representation learning for attributed graphs

4.3 Global counterfactual explainer for graph neural networks
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Model understanding and explanation

» Deep predictive model {Foreigner=True, Num_Loans=1,
Missed__Payments=2} = Denied
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Model understanding and explanation

» Deep predictive model {Foreigner=True, Num_Loans=1,
Missed__Payments=2} = Denied

Foreigner

» Feature importance [35, 36] Num_Loans

Missed_Payments
Importance
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Model understanding and explanation

» Deep predictive model {Foreigner=True, Num_Loans=1,
Missed__Payments=2} = Denied

Foreigner

» Feature importance [35, 36] Num_Loans

Missed_Payments
Importance

> Local counterfactual [37, 38]  {Foreigner=True, Num_Loans=1,
Missed__Payments=1} =- Approved
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Model understanding and explanation

> Deep predictive model {Foreigner=True, Num_Loans=1,
Missed__Payments=2} = Denied
Foreigner

» Feature importance [35, 36] Num_Loans

Missed_Payments
Importance

> Local counterfactual [37, 38]  {Foreigner=True, Num_Loans=1,
Missed__Payments=1} =- Approved

» Global counterfactual [39] izForafgneL:;rue a”f: N<ulm—|‘°anszl
en ISs€d__Faymentss
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Understanding GNNs
©

» Graph classification GNN —C—@®) —>  Mutagen

Formaldehyde
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E> Mutagen
©—®

Formaldehyde

» Graph classification GNN ®)

. Important subgraph
> Subgraph importance [40, 41] @ ©—@®)
Formaldehyde
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GCFExplainer
Understanding GNNs

©
» Graph classification GNN —C—@®) = Mutagen
Formaldehyde
©
. Important subgraph
> Subgraph importance [40, 41] @ ©—@®)
Formaldehyde
©

» Local counterfactual [42, 43] H—C—O E> Non-mutagen

Formic acid

Can we generate global counterfactual explanation for GNNs?
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Global counterfactual explanation for GNNs’

» Global recourse: For any undesired graph G € G (GNN(G) = 0),
the explanation r should provide a recourse: GNN(7(G)) = 1.

» Interpretable: 7 should be (much) easier to understand (than GNN).

"Huang*, Kosan*, et al. GCFExplainer: Global counterfactual explainer for graph neural networks. Ongoing.
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Global counterfactual explanation for GNNs’

» Global recourse: For any undesired graph G € G (GNN(G) = 0),
the explanation r should provide a recourse: GNN(7(G)) = 1.

» Interpretable: 7 should be (much) easier to understand (than GNN).
Explanation based on counterfactual summary

» Represent r with a set C of counterfactual summary graphs.

» The recourse for GG is given as the minimal cost summary graph:

re(G) = arg min cost(G, C)
ceC

where cost(-, -) is any distance metric between graphs (e.g., GED).

"Huang*, Kosan*, et al. GCFExplainer: Global counterfactual explainer for graph neural networks. Ongoing.
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Quantifying explanation quality
» Cost: minimize the overall recourse cost for all undesired graphs:

cost(r¢) = Y mincost(G,C)
Geg cec

» Coverage: maximize the number of undesired graphs that have an
actionable recourse (i.e., within a cost budget B):

cover(r¢) = |{G € G | Iéli?COSt(G, C) < B}|
€

» Interpretability: minimize the size of the counterfactual summary:

size(r¢) = |C|
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GCFExplainer
Quantifying explanation quality
» Cost: minimize the overall recourse cost for all undesired graphs:

cost(r¢) = Y mincost(G,C)
Geg cec

» Coverage: maximize the number of undesired graphs that have an
actionable recourse (i.e., within a cost budget B):

cover(r¢) = |{G € G | Iéli?COSt(G, C) < B}|
€

» Interpretability: minimize the size of the counterfactual summary:

size(r¢) = |C|

How can we find a good set of counterfactual summary graphs?
R
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Structuring counterfactual summary search space

Node/edge addition
—>

» Graph edit map: A (meta)graph of
. Node/edge I Node label change
candidate summary graphs connected  removal \

by single graph edits. Q/O Q/O\Q
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Structuring counterfactual summary search space

Node/edge addition
—>

» Graph edit map: A (meta)graph of
. Node/edge I Node label change
candidate summary graphs connected  removal \

by single graph edits. Q/O Q/O\Q

Generating diverse counterfactual summary

» Vertex-reinforced random-walk [44]: Prob(g — ¢') o« N(¢')1(¢’).
Converges to diverse (representative), important nodes [45, 46].
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Structuring counterfactual summary search space

Node/edge addition
—>

» Graph edit map: A (meta)graph of
. Node/edge I Node label change
candidate summary graphs connected  removal \

by single graph edits. Q/O Q/O\Q
Generating diverse counterfactual summary

» Vertex-reinforced random-walk [44]: Prob(g — ¢') o« N(¢')1(¢’).
Converges to diverse (representative), important nodes [45, 46].

» Importance function I(g): counterfactual probability GNN(g),
individual cost cost(,)), and individual coverage cover(r).
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Structuring counterfactual summary search space

Node/edge addition
—>

» Graph edit map: A (meta)graph of
. Node/edge I Node label change
candidate summary graphs connected  removal \

by single graph edits. Q/O Q/O\Q

Generating diverse counterfactual summary

» Vertex-reinforced random-walk [44]: Prob(g — ¢') o« N(¢')1(¢’).
Converges to diverse (representative), important nodes [45, 46].

» Importance function I(g): counterfactual probability GNN(g),
individual cost cost(,)), and individual coverage cover(r).

» Teleportation to undesired graphs: manages the exponential search
space, increases convergence rate with adaptive probability.
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Dataset

» Mutagenicity [47]: A collection of 3,000 molecules classified into
two categories: mutagen and non-mutagen (desired).

Baselines
» Ground-truth desired graphs in the dataset + Greedy summary
» Local counterfactuals from RCExplainer [42] 4+ Greedy summary

Evaluation metrics
» cost(rc¢) for different size(r¢)
» cover(r¢) for different size(r¢)
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Comparison with summary of local counterfactuals
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Figure: Global counterfactual quality comparison. GCFExplainer consistently
outperforms the baselines with 30% less recourse cost and 2x coverage percentage.
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Visualizing global counterfactuals

o1 o gu  gw
CH3-C-N-0O-C-N-CHg CH3*C N- C N-CH; CH3-C-N-OH CH3*C N -CHs

(a) Undesired mutagenic molecules

(R I‘{ (H) I‘{ OOHO H O H ONO
CH3-C-N-O-C-N-CHs CHng N C N CH3 CH3fC N OH CH37C N CH3

(b) RCExplainer local counterfactuals (by removing red edges)

I
CH3-C-N-5-C-N-CHs
(c) GCFExplainer global counterfactual (by adding/replacing with a sulfur atom)
Figure: Visualization of local and global counterfactuals. The global counterfactual

provides a high-level picture of the recourse for the undesired molecules.
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Contributions

» We present GCFExplainer, the first global counterfactual explainer
for GNNs based on vertex-reinforced random-walks.

» We demonstrate the effectiveness and usefulness of GCFExplainer
in providing high-level recourse for GNN-based graph classification.

Ongoing work
» Improving the scalability of the algorithm.
» Finding a more consistent proxy of graph edit distance.
» Comparing with more baselines on more datasets.
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5. Conclusions and plan

Zexi Huang Graph Representation Learning



Conclusions and plan

Graph representation learning leads to new state-of-the-art
results for many graph-based applications. We have overviewed
our progress towards advancing it, which will form this thesis.

Information-rich Applications

Graphs

Node classification [1, 3]

Multiscale graphs [1, 3, 6, 7] Graph ) [ Link prediction [1, 2, 4] ]
Signed graphs [2] » Represen_tatlon » [ Community detection [1, 6] ]
Learnlng [ Measuring polarization [2] ]

Attributed graphs [3, 4, 5, 7, 8]

Heterogeneous graph [8] Counterfactual explanation [5]

Anomaly detection [7, 8]
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Conclusions and plan

Sep/22: Finish paper on counterfactual explanation
Dec/22: Finish paper on PMI clustering
Mar/23: Finish paper on anomaly detection

June/23: Thesis defense
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Random-walk embedding

Research papers
» [9] DeepWalk: online learning of social representations
» [10] node2vec: scalable feature learning for networks
» ... (with many more items omitted)
» [48] InfiniteWalk: deep network embeddings as ...
» [49] Node proximity is all you need: ...

Surveys
> [50]Representation learning on graphs: methods and applications
> ...

> [51]Machine learning on graphs: a model and comprehensive taxonomy

Difficult to compare existing methods and to design novel ones
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Question: link prediction

+ @

(a) Dot product (b) Classification based on combined embeddings
[28, 52, 29] [10, 53, 13]

How should embeddings be used for link prediction?
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Question: multiscale

w
O
c
@
£
L
—
\A / ()
a
Random-walk scale
(a) Random-walks capture (b) Embedding performance [10]
multiple structural scales [1] insensitve to random-walk scales

How do embeddings capture different structural scales?
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G TGS
Random-walk process

M: transition matrix m, II: stationary distribution
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Random-walk process

M: transition matrix m, II: stationary distribution

Random-walk based embedding methods

Non-standard

Process

DeepWalk, LINE
Multiscale, NetMF
NetSMF, InfiniteWalk

node2vec, APP
NetMF, NERD
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Similarity metric

PMI: R = log(IIM7) — log(nnT)

1[54] Levy and Goldberg. Neural word embedding as implicit matrix factorization. NeurlPS'14.
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Similarity metric

PMI: R =log(IIM7) — log(mnT)  Autocovariance?: R = [IM7™ — nn”

1[54] Levy and Goldberg. Neural word embedding as implicit matrix factorization. NeurlPS'14.
2[1] Delvenne, Yalikari, and Barahona. Stability of graph communities across time scales. PNAS'10.
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Similarity metric

PMI: R =log(IIM7) — log(nm”)  Autocovariance?: R = IIM™ — wr?

1[54] Levy and Goldberg. Neural word embedding as implicit matrix factorization. NeurlPS'14.
2[1] Delvenne, Yalikari, and Barahona. Stability of graph communities across time scales. PNAS'10.
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Similarity metric

PMI*: R =log(IIM7) — log(rn’)  Autocovariance?: R = IIM™ — wrl

1[54] Levy and Goldberg. Neural word embedding as implicit matrix factorization. NeurlPS'14.
2[1] Delvenne, Yalikari, and Barahona. Stability of graph communities across time scales. PNAS'10.
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Similarity metric

PMI*: R =log(IIM7) — log(rnT)  Autocovariance?: R = [IM™ — 7

Random-walk based embedding methods

1%}

2]

Q

O

o

a Standard

>

£

-

0

g PMI .
I Autocovariance

DeepWalk, LINE

InfiniteWalk

1[54] Levy and Goldberg. Neural word embedding as implicit matrix factorization. NeurlPS'14.

2[1] Delvenne et al. Stability of graph communities across time scales. PNAS'10.

Zexi Huang Graph Representation Learning

Non-standard

. node2vec, APP
NetMF, NetSMF Multiscale NetMF, NERD

June 2, 2022
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T G
Embedding algorithm

Explicit: Factorization (SVD) Implicit: Sampling (SGD)
min||UUT — R||% max »_, log Pr((u,v) € Dlu,, v,)
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T G
Embedding algorithm

Explicit: Factorization (SVD) Implicit: Sampling (SGD)
min||UUT — R||% max »_, log Pr((u,v) € Dlu,, v,)

Random-walk based embedding methods

]
[
O
Q
o
2
5
e Autocovariance Autocovariance
&
E
= . i ati .__Samplin o
?o Sampling Fa':to'"z""t'onSampling Factorization © & FactorizationSampling Factorization
< node2vec
DeepWalk NetMF Multiscale APP NetMF
NetSMF ? ? ?
LINE e NERD
InfiniteWalk
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T G
Embedding algorithm

Explicit: Factorization (SVD) Implicit: Sampling (SGD)
min||UUT — R||% max »_, log Pr((u,v) € Dlu,, v,)

Random-walk based embedding methods

Autocovariance

Sampling

Algorithm  Similarity Process

Sampling Factorization FactorizationSampling Factorization
node2vec
NetMF .
DeepWalk Multiscale APP NetMF
LINE I\.Ie.tSMF Our work Our work NERD  Our work Our work Our work
InfiniteWalk - Our work
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Datasets
V| €| labels
BrocCataroc 10,312 333,983 interests
AIRPORT 3,158 18,606 countries/continents
WIKI-WORDS 4777 92,157 tags
PoriticaALBrocs 1,222 16,717 ideologies

Downstream tasks
» Node classification (Micro/Macro-F1)
» Link prediction (precision@k)
» Community detection (NMI)
Embedding dimension = 128
Vi), G
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T G
Comparing similarity metrics: node classification

PMI: R = log(ITM7) — log(rn”)  Autocovariance: R = IIM™ — '’

BlogCatalog Airport: country Airport: continent Wiki-words
0.6 J
0.28 ./.,._.—0—0’._.\. 0.16
0.96 1
0.5 1
J 0.14 4
E',_ 0.26 0.93 1
o
5 0.4
© 0.24 1 0.90 4 0.12 1
=
0.3 1
0.87 1
0.22 1 0.10 1
T T T T 0.21 T T T T 0.84 1 T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Training ratio (%)
—e— PMI —»— Autocovariance

Figure: PMI consistently outperforms autocovariance in node classification.
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Comparing similarity metrics: link prediction

PMI: R = log(lIMT) — log(mnT)  Autocovariance: R = IIM"™ — wr?

BlogCatalog Airport Wiki-words PoliticalBlogs
] 0.7 1 J
0.40 0.6 051
v 0351 06 0.5
® , 0.5 0.4 4
c 030 0.4
(s} 0.4 1
% 0.25 1
2 0.3 0.3
@ 0.201 037
j
g | 024 Nﬁ*-‘—‘_‘—i—ﬁ—‘ |
0.15 1 0.2 0.2
J 0.1
0101 R S e ] k“‘—c—.-._._._._. 0.1
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
k (%)

—e— PMI (dot product) —%— Autocovariance (dot product) —+— PMI (classification) —k— Autocovariance (classification)

Figure: Autocovariance with dot product ranking consistently outperforms PMI (with
either ranking scheme) in link prediction.
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Understanding the difference

predicted degree o embedding norm ||ul|
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Understanding the difference

actual degree for autocov.
constant for PMI

predicted degree o embedding norm ||ul|
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Understanding the difference

actual degree for autocov.

predicted degree o embedding norm ||ul|
constant for PMI

Autocovariance captures heterogeneous degree distribution in graphs!
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Understanding the difference

actual degree for autocov.

predicted degree o embedding norm ||ul|
constant for PMI

Autocovariance captures heterogeneous degree distribution in graphs!

BlogCatalog Airport Wiki-words PoliticalBlogs
1.01-® x 1.01® % 1.0 x| 101 %
XXX
% o x %

0.8 %. X4 0.8 0.8 0.8

06 L S x X 0.6 0.6 * T
= o XK X x X o °® %
B oo ”. &
= 0.4 0.41 % 0.41 . . ° o 0.41 3 ° ®

G L °¢
0.2 0.2 0.2 0.2
0.0 0.0 1 0.0 0.0 1
0.0 02 04 06 08 10 0.0 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 10
degree(u)
e PMI x  Autocovariance

Figure: Autocovariance embedding norms correlate with actual degrees, but not PMI.
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T G
Understanding the difference

actual degree for autocov.

predicted degree o embedding norm ||ul|
constant for PMI

=

d

(a) PMI (b) Autocovariance

Figure: Autocovariance predicts more edges connecting to the hubs than PMI.
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Multiscale

PMI: R =log(ITM7) — log(7n”)  Autocovariance: R = IIM™ — nn”

Zexi Huang Graph Representation Learning



Random-walk embedding
Multiscale

PMI: R = log(I1X "7 M') —log(7n”)  Autocovariance: R = IIM™ — nnl

BlogCatalog Airport
0.45 A
0.25
0.40
T 0.20
w
. 0.35
g
@ 0.15 A J
2 0.30
0.10 A 0.25
0.05 T T T T 0207 T T T T
0 10 20 30 40 50 0 10 20 30 40 50

Markov time T
—e— PMI —+— Log-mean-exp PMI

Figure: Node classification performance for
PMI can be improved by smooth-averaging
across multiple Markov times.
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Random-walk embedding
Multiscale

PMI: R = log(I1X "7 M') —log(7n”)  Autocovariance: R = IIM™ — nnl

. I
BlogCatalog Airport BlogCatalog Airport s
0.35 355
3
0.45 , 0167 32 S
0.25 4 X 0.28 28 =
o
0.40 S 0.141 28 ®
o 0.20 ® 0.21 213
I.II. 4 o
IS 0.35 < 0.12 1 24 @
8 0.154 0301 G 0.14 1o
= . $ 0.101 20 3
o
0.10 4 0.251 o 0.07 M 7 g
0.08 1 16 2
0.20 T T T T 0.00 T - - 0 ©
0.05 4 ! ! ! ! l l l l 0 25 50 75 100 0 25 50 75 100 w@
0 10 20 30 40 50 0 10 20 30 40 50 Markov time T/ o
Markov time © —e— Precision —+— Added recall (intra)
—e— PMI —— Log-mean-exp PMI —<— Added recall (al) ~—&— Added recall (inter)

Figure: Node classification performance for Figure: Prediction of edges of specific
PMI can be improved by smooth-averaging structural scales can be improved with
across multiple Markov times. different Markov times for autocovariance.
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Problems:
1. How can one compare existing methods and to advance the SOTA?
2. How should embeddings be used for link prediction?
3. How do embeddings capture different structural scales?

Contributions:
1. A unified view of different processes, similarities, and algorithms.
2. Autocovariance embedding is significantly better for link prediction.
3. Ways to exploit multiscale similarity for optimized performance.
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Social polarization

@ Donald J. Trump & i
@realDonaldTrump -

The Fake News is working overtime. Just
reported that, despite the tremendous
success we are having with the economy &
all things else, 91% of the Network News
about me is negative (Fake). Why do we work
so hard in working with the media when it is
corrupt? Take away credentials?

Donald J. Trump &

@realDonaldTrump
These are the things and events that happen when a 1 love seeing Trump supporters CRY, it's my daily
sacred landslide election victory is so unceremoniously &

viciously stripped away from great patriots who have
been badly & unfairly treated for so long. Go home with
love & in peace. Remember this day forever!

O}

that they have achieved.

of electios
, or liked

fraud is disputed, and this Tweet can't be replied to,
to a risk of violence

Zexi Huang Graph Representation Learning

medicine, my weekly energy, my monthly inspiration
and my yearly motivation. Their loss is the only reason
i'm still alive, i was born to love and enjoy the failure

June 2, 2022
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Signed random walk

> UnSigned RW: |M|1W(t) = Zall length-t paths | between u and v PI’Ob(l)

» Prob(l) captures the unsigned similarity.
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Signed random walk

> UnSigned RW: |M|1W(t) = Zall length-t paths | between u and v PI’Ob(l)

» Prob(l) captures the unsigned similarity.

> Signed RW: Muv(t) - Zall length-t paths [ between u and v PrOb(l)Sign(l)

» Sign(l) based on the social balance theory captures the signed similarity.
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Signed random walk

> UnSigned RW: |M|Uv(t) - Zall length-t paths | between u and v PI’Ob(l)

» Prob(l) captures the unsigned similarity.

> Slgned RW: Muv(t) - Zall length-t paths [ between u and v PrOb(l)Slgn(l)

» Sign(l) based on the social balance theory captures the signed similarity.

1/2 l Prob() Sign(l)

1/2
- (3) 1,23 12x1/2=14 -1x1=-1

= - 1x-1=1
2 {1,4,5) 1/2x1/2=1/4 x
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Measuring polarization

» |M|..(t) and M., (t) are highly correlated if u is polarized.

[M|.; =[0.23,0.21,0.21,0.18,0.05,0.02,0.02,0.02]

M$% =1[0.23,0.21,0.21,0.18, ME =1[0.12, ,0.09,0.07,
] 0.03,0.01,0.01, 0.01]
corr(|M|].;, M%) = 0.9849 corr(|M|.;, M5) = 0.6237
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Measuring polarization

» |M|..(t) and M., (t) are highly correlated if u is polarized.

[M|.; =[0.23,0.21,0.21,0.18,0.05,0.02,0.02,0.02]

M$% =1[0.23,0.21,0.21,0.18, ME =1[0.12, ,0.09,0.07,
] 0.03,0.01,0.01, 0.01]
corr(|M|].;, M%) = 0.9849 corr(|M|.;, M) = 0.6237

» Pol(u;t) = corr(|M].,(t), M.,(t)), Pol(G;t) = mean,cq(Pol(u;t)).
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Datasets:
V| €] 1E-1/I€]
CONGRESS 219 523 20.46%
WoW-EPS 789 116,009 18.63%

BITCOIN-ALPHA 3,772 14,077 9.31%
B1TcoIiN-OTC 5872 21,431 14.71%
REFERENDUM 10,864 251,396 5.09%

WIKI-RFA 11,275 169,925 22.04%

Baselines: SiNE [55], SIGNet [56], SIDE [7], BESIDE [8], SLF [57], ROSE [13]
Signed link prediction setting:
» POLE: compute dot product similarity
» Baselines: train two classifiers (positive/negative vs non-links)
» Evaluation metric: positive/negative precision@k

Zexi Huang Graph Representation Learning June 2, 2022

72/53



Backup POLE

Signed link prediction without link existence information
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Figure: Signed link prediction performance comparison between POLE and baselines
without link existence information. POLE outperforms all baselines in almost all
datasets, especially for the polarized ones.
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Interaction between unsigned and signed similarity

1o Referendum (positive) Referendum (negative) Wiki-RfA (positive) Wiki-RfA (negative)
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Figure: Scatter plot of the reconstructed signed and unsigned similarity for different
node pairs in signed link prediction. Combining signed and unsigned similarity improves
prediction for negative links but has a negligible effect on predicting positive links.
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Measuring polarization

Table: Ten least polarized congresspeople
by our RW-based polarization measure.

Congressperson State Party Score
Henry Cuellar* Texas D -0.6542
Jane Harman' California D -0.5376
Curt Weldon Pennsylvania R -0.4381

Dutch Ruppersberger Maryland D -0.4318
Jim Moran Virginia D -0.3832
Dave Obey Wisconsin D -0.3588

Wayne Gilchrest Maryland R -0.3503

Duke Cunningham California R -0.3248
Al Edwards Texas D -0.3063
Lincoln Davis Tennessee D -0.2901

* “Voted with President Trump 75% of time” — 538
 “Best Republican in the Democratic Party” — LA Times
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Measuring polarization

Table: Ten least polarized congresspeople Figure: Polarization and social balance of

by our RW-based polarization measure. real-world graphs and LFR benchmarks.
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Simple Graph Convolution!:
H® = 5(M"X0)

Ij/(k): kth order embedding, X: node attributes, ©: trainable weights
M: random-walk transition with added self-loops

1Wu et al. Simplifying

graph convolutional networks. ICML'19.
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Simple Graph Convolution!:
H® = 5(M"X0)

Ii,(k): kth order embedding, X: node attributes, ©: trainable weights
M: random-walk transition with added self-loops

(b) o1 (k=19  (d) k= 10000

Figure: Visualization of embedding without training for Cora. Colors denote actual
classes. A good choice of neighborhood helps reveal the cluster structure.

1Wu et al. Simplifying graph convolutional networks. ICML’19.
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SEC O GND-Nets
Node classificati It
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Figure: Semi-supervised node classification performance. Our method (GND-Nets)
outperforms baselines for various number of labeled nodes across the datasets.
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G
Learned diffusion weights
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Figure: Mean diffusion weights (over 30 splits) across different datasets. Note that
Cora and Pubmed have larger weights for high-order neighborhoods compared to
Chameleon and Squirrel.
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