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Introduction Representation learning

Representation learning

“Extracting key information from raw data to enable effective data
science applications via deep neural networks.”

» For images: Convolutional Neural Networks (CNNs)
» For text: Transformers (e.g., ChatGPT)
» For graphs

Graph applications
» Social network analysis: community detection
» Product and video recommendation: link prediction
» Financial fraud detection: anomaly detection

» Novel drug discovery: graph classification
A 3053
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1Huang, Silva, Singh. A broader picture of random-walk based graph embedding. KDD'21.

2Huang, Silva, Singh. POLE: Polarized embedding for signed networks. WSDM'22.

3Huang*, Kosan*, et al. GCFExplainer: Global counterfactual explainer for graph neural networks. WSDM'23.
4Huang, Kosan, Silva, Singh. Link prediction without graph neural networks. Under review.

5Ye, Huang, Hong, Singh. Graph convolutional networks meet neural diffusions. Under review.
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2Huang, Silva, Singh. POLE: Polarized embedding for signed networks. WSDM'22.

3Huang*, Kosan*, et al. GCFExplainer: Global counterfactual explainer for graph neural networks. WSDM'23.
4Huang, Kosan, Silva, Singh. Link prediction without graph neural networks. Under review.
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SHuang, Kondapaneni, Silva, Singh. Multiscale community detection with pointwise mutual information. Ongoing.
7Arriola, Kosan, Huang, Sharma, Singh. Multiscale anomaly detection with graph autoencoders. Ongoing.
8Huang. Graph-based fraud detection in Kindle Direct Publishing. Amazon science internship’20,21.

9Huang. Graph-based text classification for Kindle content intelligence. Amazon science internship’22.
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Graph representation learning for link prediction Link prediction background

Link prediction

Link prediction: predicting the unobserved interactions (edges) between nodes given
the observed graph structure (topology) and other information (e.g., node attributes).
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Graph representation learning for link prediction Link prediction background

Random-walk based node embedding
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(a) Use random-walks to capture (b) Find low-dimensional latent vectors
topological proximity (similarity) (embeddings) to preserve similarity
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Graph representation learning for link prediction Link prediction background

Link prediction based on node embedding

@
+ @

(a) Dot product [1, 2, 3] (b) Classification based on combined embeddings [4, 5, 6]
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Graph representation learning for link prediction Random-walk based embedding

A broader picture of random-walk based embedding!

Random-walk based embedding methods
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» We present a unified framework for random-walk based embedding.
» We find that Autocovariance enables state-of-the-art link prediction.

1Huang, Silva, Singh. A broader picture of random-walk based graph embedding. KDD'21.
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Graph representation learning for link prediction Random-walk based embedding

Random-walk based similarity metrics

M: transition matrix 7, II: stationary distribution 7: random-walk scale
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Random-walk based similarity metrics

M: transition matrix 7, II: stationary distribution 7: random-walk scale

PMI: R = log(TIM7) — log(nn ")
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Random-walk based similarity metrics

M: transition matrix 7, II: stationary distribution 7: random-walk scale

PMI: R =log(IIM7) —log(rm")  Autocovariance: R = IIM™ — "
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Figure: Autocovariance with dot product ranking consistently outperforms PMI (with
either ranking scheme) in link prediction.
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Graph representation learning for link prediction Random-walk based embedding

Understanding the difference

actual degree for AC
constant for PMI

predicted degree o< embedding norm ||ul|
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el el
Understanding the difference

actual degree for AC

predicted degree o< embedding norm ||ul|
constant for PMI

Autocovariance captures heterogeneous degree distribution in graphs!

(a) PMI (b) Autocovariance

Figure: Autocovariance predicts more edges connecting to the hubs than PMI.
April 5, 2023 12/49



Polarized signed embedding
Polarized embedding for effective signed link prediction?

Friendly (+) —— Adversarial (—)

2Huang, Silva, Singh. POLE: Polarized embedding for signed networks. WSDM'22.
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Graph representation learning for link prediction Polarized signed embedding

Polarized embedding for effective signed link prediction?

Friendly (+)

Adversarial (—) ———

» We identify the key challenge of embedding polarized signed graphs.
» We develop polarized embedding for SOTA negative link prediction.

2Huang, Silva, Singh. POLE: Polarized embedding for signed networks. WSDM'22.
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Graph representation learning for link prediction

Signed link prediction in polarized networks

Figure: A synthetic
polarized graph based on
the LFR benchmark [7].
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Signed link prediction in polarized networks

(a) Unsigned embedding (RWE) (b) Signed embedding (ROSE)

0.0 0.5 1.0

0 T
0.5 1.0 -1.0 -0.5
Normalized reconstructed similarity

[ Disconnected [ Negative [ Positive

0+
-1.0 -0.5 0.0

Figure: A synthetic Figure: Distributions of the reconstructed similarity for

polarized graph based on different types of node pairs in the polarized graph using (a)
the LFR benchmark [7].  unsigned [8] and (b) signed [6] embedding.
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Polarized signed embedding
POLE: polarized embedding
» Signed random-walks to capture both similarities:

M, (t) = > Prob(1)Sign (1)

all length-t paths | between u and v
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POLE: polarized embedding
» Signed random-walks to capture both similarities:

My (t) = > Prob(1)Sign (1)
all length-t paths | between u and v
» Prob(l) captures the unsigned similarity.
» Sign(/) based on the social balance theory captures the signed similarity.
lJ/rZ l Prob(l) Sign(l)

1/2
> (1,2,3) 1/2x1/2=1/4 -1x1=-1

» — (1,4,5) 1/2x1/2=1/4 -1x-1=1
1/2 12
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i R TG
POLE: polarized embedding
» Signed random-walks to capture both similarities:

My (t) = > Prob(1)Sign (1)

all length-t paths | between u and v

» Prob(l) captures the unsigned similarity.
» Sign(/) based on the social balance theory captures the signed similarity.

1/2 l Prob(l) Sign(l)
+

1/2
- (1,2,3) 1/2x1/2=1/4 -1x1=-1

P = (1,4,5) 1/2x1/2=1/4 -1x-1=1
1/2 1/2
» POLE: extends Autocovariance similarity [9, 8] to signed RW
R(t) = M(t)"WM(t)
YL



Graph representation learning for link prediction Polarized signed embedding

Polarized similarity consistency

. (a) Unsigned embedding (RWE) (b) Signed embedding (ROSE) (c) Polarized embedding (POLE)
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Figure: Polarized embedding (c) preserves polarized similarity consistency—negative
pairs are separated from other pairs in the similarity spectrum—while unsigned
embedding (a) and signed embedding (b) fail to do so.

Zexi Huang Graph Representation Learning April 5, 2023 16 /49



Graph representation learning for link prediction Polarized signed embedding

Signed link prediction results
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Figure: Signed link prediction with link existence information performance comparison.
POLE outperforms all baselines in almost all datasets, especially for the negative links.
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Graph representation learning for link prediction Link prediction without GNNs

Attributed graph embedding and graph neural networks

» GNNs [10, 11, 12] are a powerful DL paradigm that learns to generate
better node features (embeddings) using structure information.

e IS HDe-.
-®§>@: -® : . 0/
-@—-—-:} @
e

(a) Input attributed graph (b) GNN message-passing (c) Pooling and classification
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Graph representation learning for link prediction Link prediction without GNNs

Attributed graph embedding and graph neural networks

» GNNs [10, 11, 12] are a powerful DL paradigm that learns to generate
better node features (embeddings) using structure information.

WG
-®§>@: -® : . 0/
-@—-——:} @
e
(a) Input attributed graph (b) GNN message-passing (c) Pooling and classification

» Advantages over topological heuristics for link prediction:

» Potential to discover new heuristics via supervised learning.
» Natural incorporation of node attribute information.
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Challenges of GNNs for link prediction
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(a) GNN message-passing (b) Node classification (c) Link prediction

Figure: The attribute-centric message-passing mechanism is effective for tasks on the
topology, e.g., node classification. Link prediction, however, is a task for the topology.
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Challenges of GNNs for link prediction
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(a) GNN message-passing (b) Node classification (c) Link prediction

Figure: The attribute-centric message-passing mechanism is effective for tasks on the
topology, e.g., node classification. Link prediction, however, is a task for the topology.

Are there better alternatives to message-passing for combining
node attributes and graph topology for link prediction?
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Link predition without GNNs
Challenges of GNNs for link prediction

Table: Common real-world datasets for link prediction benchmark.

#Nodes #Edges Avg. degree Density Class ratio

CORA 2,708 5,278 3.90 0.14% 1:695
CITESEER 3,327 4 552 2.74 0.08% 1:1216
PUBMED 19,717 44,324 4.50 0.02% 1:4385

Puaoro 7,650 119,081 31.13 0.41% 1:246

COMPUTERS 13,752 245,861 35.76 0.26% 1:385
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Challenges of GNNs for link prediction

Table: Common real-world datasets for link prediction benchmark.

#Nodes #Edges Avg. degree Density Class ratio

CORA 2,708 5,278 3.90 0.14% 1:695
CITESEER 3,327 4 552 2.74 0.08% 1:1216
PUBMED 19,717 44,324 4.50 0.02% 1:4385

Puaoro 7,650 119,081 31.13 0.41% 1:246

COMPUTERS 13,752 245,861 35.76 0.26% 1:385

Have GNN-based link prediction methods properly addressed
the intrinsic class imbalance?
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Graph representation learning for link prediction Link prediction without GNNs

Supervised link prediction evaluation

» Existing work [13, 14, 15, 16, 17, 18, 19, 20, 21] adopts AUC and AP
with biased testing (downsampling negative/disconnected pairs),
which pictures an overly optimistic view of model performance.
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Graph representation learning for link prediction Link prediction without GNNs

Supervised link prediction evaluation
» Existing work [13, 14, 15, 16, 17, 18, 19, 20, 21] adopts AUC and AP
with biased testing (downsampling negative/disconnected pairs),
which pictures an overly optimistic view of model performance.
» We argue for evaluation under unbiased testing, which has been
widely applied in unsupervised link prediction [1, 3, 8] and IR.

Supervised link prediction training
» Existing work uses binary cross entropy loss with biased training.

» |t discards potentially useful evidence from negative pairs.
» It induces the model to overestimate the probability of positive pairs.
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Graph representation learning for link prediction Link prediction without GNNs

A simpler, faster, and stronger paradigm for link prediction?
» Explore alternative frameworks to combine topology and attributes
» Address the problem of class imbalance in training and testing

Input graph Enhanced graph Predicted links
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w
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Autocovariance R Link ranking

3Huang, Kosan, Silva, Singh. Link prediction without graph neural networks. Under review
Zexi Huang

Graph Representation Learning April 5, 2023 22 /49



Graph representation learning for link prediction Link prediction without GNNs

Input graph Enhanced graph Predicted links
ppg QEEE Omm O mmm O})
O » o @’{ -C( » 0" I = L(6)
Graph learmng ‘ Topologlcal heur1st1c ‘ ‘ N-pair loss }

R(ab
uOI @b)my
VO uv
\ MLP(6) / Autocovariance R Link ranking

Graph learning
> Graph augmentation: £ = E + {(u,v) | s(,, 7,) > s,}
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Input graph Enhanced graph Predicted links
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Graph learning
> Graph augmentation: E = E + {(u,v) | s(z,, z,) > Sp}
» Trained weighting: w,, = MLP([z, + x; |2y — x,]];0)
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Graph representation learning for link prediction Link prediction without GNNs

Input graph Enhanced graph Predicted links
ppg QEEE Omm O mmm f
o%:&@z » o D’{ {x » o i . L(O)
Graph learmng ‘ Topologlcal heur1st1c ‘ ‘ N-pair loss }
b

R(a,b) .)/‘

wof

vO
\ MLP(6) ] Autocovariance R

Link ranking

Graph learning
> Graph augmentation: E = E + {(u,v) | s(z,, z,) > Sp}
» Trained weighting: w,, = MLP([z, + x; |2y — x,]];0)
» Combined weights: ZM =ad,+(1—a)(Bwy+ (1= 0)s(xy,x,))
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Graph representation learning for link prediction Link prediction without GNNs

Input graph Enhanced graph Predicted links
mEE OmE O Q. O/O
O%&i » o c& q 7 » o i 3 L( 9)
Graph learnmg ‘ Topologlcal heunstlc ‘ : N-pair loss : }

R(a,b) .)/(

uol

VOI

uv

MLP(8)

\ AutocovarlanceR ) Link ranking

Topological heuristic
» Applying Autocovariance [22, 8] to the enhanced graph A:

— — 73T
R - LN(D_lA)t — %
vol(G) vol“(G)
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Graph representation learning for link prediction Link prediction without GNNs

Input graph Enhanced graph Predicted links
» o {:& | » o = L(O)
Graph learnmg ‘ ‘ TOpOlOglcal heur1st1c ‘ N-pair loss
uOI R(a,b) 2
uv X
vO x
MLP(6) Autocovariance R \_ Linkranking /

N-pair loss [23]
» Contrasting each positive edge (u,v) with a set of
whose size equals to the class ratio (unbiased training):
exp(Ryy)
L(#) =— log
Z exp(Ruv) + D . 0pen(ue) P10

Zexi Huang Graph Representation Learning April 5, 2023 25 /49



Graph representation learning for link prediction Link prediction without GNNs

Table: Link prediction performance comparison (mean + std AP). Gelato outperforms
the best GNN-based method, Neo-GNN, by 145% and Autocovariance by 53%.

* Run only once as each run takes ~100 hrs;

*** Each run takes >1000 hrs;

OOM: Out Of Memory.

CORA CITESEER PuBMED PHoTO COMPUTERS
GAE 0.27 £ 0.02 0.66 + 0.11 0.26 £+ 0.03 0.28 £+ 0.02 0.30 £ 0.02
SEAL 1.89 + 0.74 0.91 + 0.66 Hkx 10.49 + 0.86 6.84"
HGCN 0.82 £ 0.03 0.74 £ 0.10 0.35 + 0.01 2.11 + 0.10 2.30 £ 0.14
LGCN 1.14 + 0.04 0.86 + 0.09 0.44 £+ 0.01 3.563 £ 0.05 1.96 £+ 0.03
GNN TLC-GNN 0.29 £+ 0.09 0.35 £ 0.18 OOM 1.77 + 0.11 OOM
Neo-GNN 2.05 + 0.61 1.61 + 0.36 1.21 +0.14 10.83 £+ 1.53 6.75
NBFNet 1.36 + 0.17 0.77 £ 0.22 o 11.99 + 1.60 *okk
BScNets 0.32 £ 0.08 0.20 £ 0.06 0.22 + 0.08 2.47 + 0.18 1.45 £+ 0.10
WalkPool 2.04 + 0.07 1.39 + 0.11 1.317 OOM OOM
April 5, 2023
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GNN TLC-GNN 0.29 £+ 0.09 0.35 £ 0.18 OOM 1.77 + 0.11 OOM
Neo-GNN 2.05 + 0.61 1.61 + 0.36 1.21 +0.14 10.83 £+ 1.53 6.75
NBFNet 1.36 + 0.17 0.77 £ 0.22 o 11.99 + 1.60 *okk
BScNets 0.32 £ 0.08 0.20 £ 0.06 0.22 + 0.08 2.47 + 0.18 1.45 £+ 0.10
WalkPool 2.04 + 0.07 1.39 + 0.11 1.317 OOM OOM
CN 1.10 £+ 0.00 0.74 £ 0.00 0.36 £ 0.00 7.73 £ 0.00 5.09 £ 0.00
Topological AA 2.07 + 0.00 1.24 + 0.00 0.45 + 0.00 9.67 £ 0.00 6.52 £ 0.00
Heuristics RA 2.02 + 0.00 1.19 4+ 0.00 0.33 £+ 0.00 10.77 + 0.00 7.71 £ 0.00
AC 2.43 + 0.00 2.65 + 0.00 2.50 £+ 0.00 16.63 + 0.00 11.64 + 0.00
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Graph representation learning for link prediction Link prediction without GNNs

Table: Link prediction performance comparison (mean + std AP). Gelato outperforms
the best GNN-based method, Neo-GNN, by 145% and Autocovariance by 53%.

* Run only once as each run takes ~100 hrs;

*** Each run takes >1000 hrs;

OOM: Out Of Memory.

CORA CITESEER PuBMED PHoTO COMPUTERS
GAE 0.27 £ 0.02 0.66 + 0.11 0.26 £+ 0.03 0.28 £+ 0.02 0.30 £ 0.02
SEAL 1.89 + 0.74 0.91 + 0.66 Hkx 10.49 + 0.86 6.84"
HGCN 0.82 £ 0.03 0.74 £ 0.10 0.35 + 0.01 2.11 + 0.10 2.30 £ 0.14
LGCN 1.14 + 0.04 0.86 + 0.09 0.44 £+ 0.01 3.563 £ 0.05 1.96 £+ 0.03
GNN TLC-GNN 0.29 £+ 0.09 0.35 £ 0.18 OOM 1.77 + 0.11 OOM
Neo-GNN 2.05 + 0.61 1.61 + 0.36 1.21 +0.14 10.83 £+ 1.53 6.75
NBFNet 1.36 + 0.17 0.77 £ 0.22 o 11.99 + 1.60 *okk
BScNets 0.32 £ 0.08 0.20 £ 0.06 0.22 + 0.08 2.47 + 0.18 1.45 £+ 0.10
WalkPool 2.04 + 0.07 1.39 + 0.11 1.317 OOM OOM
CN 1.10 &+ 0.00 0.74 £ 0.00 0.36 £ 0.00 7.73 £ 0.00 5.09 £ 0.00
Topological AA 2.07 + 0.00 1.24 + 0.00 0.45 + 0.00 9.67 £ 0.00 6.52 £ 0.00
Heuristics RA 2.02 + 0.00 1.19 4+ 0.00 0.33 £+ 0.00 10.77 + 0.00 7.71 £ 0.00
AC 2.43 + 0.00 2.65 + 0.00 2.50 £+ 0.00 16.63 + 0.00 11.64 + 0.00
MLP 0.30 £ 0.05 0.44 + 0.09 0.14 + 0.06 1.01 + 0.26 0.41 £+ 0.23
Cos 0.42 £ 0.00 1.89 4+ 0.00 0.07 £+ 0.00 0.11 £+ 0.00 0.07 £ 0.00
Attributes + MLP+AC 3.24 + 0.03 1.95 + 0.05 2.61 + 0.06 15.99 + 0.21 11.25 + 0.13
Topology Cos+AC 3.60 + 0.00 4.46 £ 0.00 0.51 + 0.00 10.01 + 0.00 5.20 £ 0.00
MLP—+Cos+AC 3.39 + 0.06 4.15 £ 0.14 0.55 + 0.03 10.88 + 0.09 575 £ 0.11
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Graph representation learning for link prediction Link prediction without GNNs

Table: Link prediction performance comparison (mean + std AP). Gelato outperforms
the best GNN-based method, Neo-GNN, by 145% and Autocovariance by 53%.

* Run only once as each run takes ~100 hrs;

*** Each run takes >1000 hrs;

OOM: Out Of Memory.

CORA CITESEER PuBMED PHoTO COMPUTERS
GAE 0.27 £ 0.02 0.66 + 0.11 0.26 £+ 0.03 0.28 £+ 0.02 0.30 £ 0.02
SEAL 1.89 + 0.74 0.91 + 0.66 Hkx 10.49 + 0.86 6.84"
HGCN 0.82 £ 0.03 0.74 £ 0.10 0.35 + 0.01 2.11 + 0.10 2.30 £ 0.14
LGCN 1.14 + 0.04 0.86 + 0.09 0.44 £+ 0.01 3.563 £ 0.05 1.96 £+ 0.03
GNN TLC-GNN 0.29 £+ 0.09 0.35 £ 0.18 OOM 1.77 + 0.11 OOM
Neo-GNN 2.05 + 0.61 1.61 + 0.36 1.21 +0.14 10.83 £+ 1.53 6.75
NBFNet 1.36 + 0.17 0.77 £ 0.22 o 11.99 + 1.60 *okk
BScNets 0.32 £ 0.08 0.20 £ 0.06 0.22 + 0.08 2.47 + 0.18 1.45 £+ 0.10
WalkPool 2.04 + 0.07 1.39 + 0.11 1.317 OOM OOM
CN 1.10 £+ 0.00 0.74 £ 0.00 0.36 £ 0.00 7.73 £ 0.00 5.09 £ 0.00
Topological AA 2.07 + 0.00 1.24 + 0.00 0.45 + 0.00 9.67 £ 0.00 6.52 £ 0.00
Heuristics RA 2.02 + 0.00 1.19 4+ 0.00 0.33 £+ 0.00 10.77 + 0.00 7.71 £ 0.00
AC 2.43 + 0.00 2.65 + 0.00 2.50 £+ 0.00 16.63 + 0.00 11.64 + 0.00
MLP 0.30 £ 0.05 0.44 + 0.09 0.14 + 0.06 1.01 + 0.26 0.41 £+ 0.23
Cos 0.42 £ 0.00 1.89 4+ 0.00 0.07 £+ 0.00 0.11 £+ 0.00 0.07 £ 0.00
Attributes + MLP+AC 3.24 + 0.03 1.95 + 0.05 2.61 + 0.06 15.99 + 0.21 11.25 + 0.13
Topology Cos+AC 3.60 + 0.00 4.46 £ 0.00 0.51 + 0.00 10.01 + 0.00 5.20 £ 0.00
MLP—+Cos+AC 3.39 + 0.06 4.15 £ 0.14 0.55 + 0.03 10.88 + 0.09 575 £ 0.11
Gelato 3.90 +£ 0.03 4.55+0.02 2.38+0.09 25.68 + 0.53 18.77 + 0.19
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Graph representation learning for link prediction Summary

Section summary:

» We investigated the problem of representation learning for effective
link prediction in scale-free, signed, and attributed networks.

» We scrutinized popular representation learning paradigms (node
embedding and GNNs) and proposed novel solutions leveraging
random-walk dynamics, social theories, and graph learning.

» Our methods enable state-of-the-art link prediction performance as
verified in various real-world datasets.
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3. Graph representation learning for graph classification
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Graph representation learning for graph classification Graph classification background

Graph classification

©
H—O0—W®

Formaldehyde
Mutagen

©
H—C0—0—®

Formic acid
Non-mutagen

C)
EH—0—0—®
G

Methanol
Mutagen?

Graph classification: Given a collection of graphs, predict the label of each unknown

graph based on known graphs and labels.

Zexi Huang Graph Representation Learning
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Graph representation learning for graph classification Graph classification background

Graph neural networks for graph classification
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(a) Input attributed graph (b) GNN message-passing (c) Pooling and classification

» GNNSs achieve state-of-the-art performance in graph classification.
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Graph representation learning for graph classification Graph classification background

Graph neural networks for graph classification
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(a) Input attributed graph (b) GNN message-passing (c) Pooling and classification

» GNNSs achieve state-of-the-art performance in graph classification.

How can we understand the prediction made by GNNs in
high-stakes decision making?
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Graph representation learning for graph classification Model understanding background

Model understanding and explanation

» Deep predictive model {Foreigner=True, Num_Loans=1,
Missed__Payments=2} = Denied
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Graph representation learning for graph classification Model understanding background

Model understanding and explanation

» Deep predictive model {Foreigner=True, Num_Loans=1,
Missed__Payments=2} = Denied

Foreigner

» Feature importance [24, 25] Num_Loans

Missed_Payments
Importance
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Graph representation learning for graph classification Model understanding background

Model understanding and explanation

» Deep predictive model {Foreigner=True, Num_Loans=1,
Missed__Payments=2} = Denied

Foreigner

i Num_L
» Feature importance [24, 25] um_Loans
Missed_Payments
Importance

> Local counterfactual [26, 27]  {Foreigner=True, Num_Loans=1,
Missed__Payments=1} =- Approved
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Graph representation learning for graph classification Model understanding background

Model understanding and explanation

> Deep predictive model {Foreigner=True, Num_Loans=1,

Missed__Payments=2} = Denied
Foreigner
Num_Loans

» Feature importance [24, 25]

Missed_Payments
Importance

> Local counterfactual [26, 27]  {Foreigner=True, Num_Loans=1,
Missed__Payments=1} =- Approved

» Global counterfactual [28] If Foreigner=True and Num_Loans>1
then Missed_Payments<1 for approval

Zexi Huang Graph Representation Learning April 5, 2023 31/49




Graph representation learning for graph classification Model understanding background

Understanding GNNs
©

» Graph classification GNN —C—@®) —>  Mutagen

Formaldehyde
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Model understanding background
Understanding GNNs
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Formaldehyde

©
> Subgraph importance [29, 30] & ©—@®

» Graph classification GNN ®)

Important subgraph

Formaldehyde
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Model understanding background
Understanding GNNs
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E> Mutagen
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Formaldehyde

©
> Subgraph importance [29, 30] & ©—@®

» Graph classification GNN ®)

Important subgraph

Formaldehyde

» Local counterfactual [31, 32] H—O—O) E> Non-mutagen

Formic acid
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Graph representation learning for graph classification Model understanding background

Understanding GNNs

» Graph classification GNN

» Subgraph importance [29, 30]

» Local counterfactual [31, 32]

©
E> Mutagen
H—CO—®
Formaldehyde
©
Important subgraph
H—O—®
Formaldehyde
©
—> Non-mutagen
H—0O—0—®
Formic acid

Can we generate global counterfactual explanation for GNNs?

Zexi Huang

Graph Representation Learning

April 5, 2023 32/49



(SNSRI BRI TR NG EESTiiTeEV < M Global counterfactual explainer for GNNs

First global graph counterfactual explainer for GNNs*

4Huang*, Kosan*, et al. Global counterfactual explainer for graph neural networks. WSDM'23.
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Graph representation learning for graph classification Global counterfactual explainer for GNNs

First global graph counterfactual explainer for GNNs*

» Global recourse: For any undesired graph G € G (GNN(G) = 0),
the explanation r should provide a recourse: GNN(r(G)) = 1.

» Interpretable: 7 should be (much) easier to understand (than GNN).

4Huang*, Kosan*, et al. Global counterfactual explainer for graph neural networks. WSDM'23.
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Graph representation learning for graph classification Global counterfactual explainer for GNNs

First global graph counterfactual explainer for GNNs*

» Global recourse: For any undesired graph G € G (GNN(G) = 0),
the explanation r should provide a recourse: GNN(r(G)) = 1.

» Interpretable: 7 should be (much) easier to understand (than GNN).
Explanation based on counterfactual summary

» Represent r with a summary set C of counterfactual graphs.

» The recourse for GG is the minimal cost (distance) summary graph:

re(G) = arg min dist(G, C)
cecC

where dist(-, -) is any distance metric between graphs (e.g., GED).

4Huang*, Kosan*, et al. Global counterfactual explainer for graph neural networks. WSDM'23.
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Global counterfactual explainer for GNNs
Quantifying explanation quality
» Cost: minimize the overall recourse cost for all undesired graphs:
cost(r¢) = Y mindist(G,C)

ceC
Geg
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Global counterfactual explainer for GNNs
Quantifying explanation quality
» Cost: minimize the overall recourse cost for all undesired graphs:
cost(r¢) = E min dist(G, C)
cec
Geg

» Coverage: maximize the number of undesired graphs that have an
actionable recourse (i.e., within a cost budget B):

cover(r¢) = {G € G | rgircldist(G,C) < B}|
=
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Quantifying explanation quality
» Cost: minimize the overall recourse cost for all undesired graphs:

cost(r¢) = min dist(G, C)
Geg cec

» Coverage: maximize the number of undesired graphs that have an
actionable recourse (i.e., within a cost budget B):

cover(r¢) = {G € G | %11? dist(G, C) < B}|
S

» Interpretability: minimize the size of the counterfactual summary:
size(r¢) = |C]

Zexi Huang Graph Representation Learning



Graph representation learning for graph classification Global counterfactual explainer for GNNs

Structuring counterfactual summary search space

O/()\ONode/edge addition
» Graph edit map: A (meta)graph of

. . Node/edge
candidate graphs connected by single  removal ! W‘i'a“‘ma"“’e

graph edits. O/O

P
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Structuring counterfactual summary search space

O/()\ONode/edge addition
» Graph edit map: A (meta)graph of

. . Node/edge
candidate graphs connected by single mova 4 Wﬁlabelchange

graph edits. O/O

Generating diverse counterfactual summary

P

» Vertex-reinforced random-walk: Converges to diverse graphs [33].
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Structuring counterfactual summary search space

O/()\ONode/edge addition
» Graph edit map: A (meta)graph of

. . Node/edge
candidate graphs connected by single mova 4 Wﬁlabelchange

graph edits. O/O

Generating diverse counterfactual summary

P

» Vertex-reinforced random-walk: Converges to diverse graphs [33].
» Guided transitions: Biases towards good counterfactual summaries.
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(SNSRI BRI TR NG EESTiiTeEV < M Global counterfactual explainer for GNNs

Structuring counterfactual summary search space

O/()\ONode/edge addition
» Graph edit map: A (meta)graph of

. . Node/edge
candidate graphs connected by Slngle removal 1 Wﬁlabelchange

graph edits. O/O

Generating diverse counterfactual summary

P

» Vertex-reinforced random-walk: Converges to diverse graphs [33].
» Guided transitions: Biases towards good counterfactual summaries.
» Random teleportation back: Manages the exponential search space.
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Global counterfactual explainer for GNNs
Comparison with summary of local counterfactuals

NCI1 Mutagenicity AIDS Proteins
80 80 40 40
I
S 60 60 30 30
()
a0 40 20 20
o
[
320 20 10 10
© ) A a———A—
0 0 0 0
0.24 0.25 0.23 0.67
0.20 0.21 0.20 0.53
@
S 0.16 0.17 0.17 0.39
o
0.12 0.13 0.14 0.25
0.08 0.09 0.11 0.11
0 20 40 60 80 100 0 20 40 60 80 20 40 60 80 100 0 20 40 60 80 100

00 0
Size (k)

—*— Ground-Truth —— RCExplainer =~ —— CFF —s— GCFExplainer

Figure: Global counterfactual quality comparison. GCFExplainer consistently
outperforms the baselines with higher coverage and lower cost across different sizes.
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Graph representation learning for graph classification Global counterfactual explainer for GNNs

Visualizing global counterfactuals
C

| | | |
c C c
o= c/c 0*04C C\C o=cC —C/C>C C //C>C\j c
— / — . —
N N/ ¢ (‘; ‘c c
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Figure: The global counterfactual explanation graph (third row) presents a high-level
recourse rule—changing ketones and ethers into aldehydes—to combat HIV, while the

edge removals in local counterfactual examples (second row) are hard to generalize.
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Graph representation learning for graph classification Global counterfactual explainer for GNNs

Visualizing global counterfactuals

| | | |
C c C C
c fe) c / c
o=c—c C/\/C o=cZc © (‘;/C o:c—c/(‘j/c/C oc/c\c/c/C
AN - TN TN
o c (‘: c o c T c
¢ cl ¢ c
c jofe) C / c
o=cd—c S~ \/C o:ct-c C/ \/C o:c—c/?/ /C 0—04?/\/0
\C cl \c.-/c\ &= \é/cn
‘o c c c

Figure: The global counterfactual explanation graph (third row) presents a high-level
recourse rule—changing ketones and ethers into aldehydes—to combat HIV, while the

edge removals in local counterfactual examples (second row) are hard to generalize.
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Visualizing global counterfactuals
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recourse rule—changing ketones and ethers into aldehydes—to combat HIV, while the

edge removals in local counterfactual examples (second row) are hard to generalize.
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Graph representation learning for graph classification Global counterfactual explainer for GNNs

Section summary:

» We formulate the novel problem of global counterfactual reasoning
and explanation of GNNs for graph classification.

» We present GCFExplainer, the first global counterfactual explainer
for GNNs that generates representative counterfactual summaries.

» We demonstrate the effectiveness and usefulness of GCFExplainer
in providing high-level recourse for GNN-based graph classification,
in the context of drug property prediction and discovery.
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4. Graph representation learning for tasks on multiscale graphs
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Graph representation learning for tasks on multiscale graphs

Multiscale graphs

v A

D R

T — N —

Figure: Global network of airports connected by domestic and international fights.
Nodes in multiscale graphs form dense clusters at different structural scales (countries
and continents here).
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Graph neural diffusion networks®
» Multiscale message-passing as graph diffusions:

K1
ulf) = Z ap MFu0)
k=0

» Existing work [34, 35] adopts fixed diffusion weights «.

5Ye, Huang, Hong, Singh. Graph convolutional networks meet neural diffusions. Under review.
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e ST T UG
Graph neural diffusion networks®
» Multiscale message-passing as graph diffusions:

K1
ulf) = Z ap MFu0)
k=0

» Existing work [34, 35] adopts fixed diffusion weights «.
» We propose to learn the diffusion weights directly from data:

) = f([W: Mu: L ME0): )

» Key result: The learned weights are adaptable to different datasets,
leading to better semi-supervised node classification performance.

5Ye, Huang, Hong, Singh. Graph convolutional networks meet neural diffusions. Under review.
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Graph representation learning for tasks on multiscale graphs Multiscale community detection

Multiscale community detection®
> RAC(7) =TIP(7) — " and RPMI(7) =1og(IIP(7)) — log(wn ")

SHuang, Kondapaneni, Silva, Singh. Multiscale community detection with pointwise mutual information. Ongoing.
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Graph representation learning for tasks on multiscale graphs Multiscale community detection

Multiscale community detection®
> RAC(7) =TIP(7) — " and RPMI(7) =1og(IIP(7)) — log(wn ")
> Clustered similarity as a quality function: 7(C;7) = >, .. Rij(7)

SHuang, Kondapaneni, Silva, Singh. Multiscale community detection with pointwise mutual information. Ongoing.
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Multiscale commnity detecion
Multiscale community detection®
> RAC(7) =TIP(7) — " and RPMI(7) =1og(IIP(7)) — log(wn ")
> Clustered similarity as a quality function: 7(C;7) = >, .. Rij(7)
» Markov Stability [22] finds the best communities {C};} by maximizing

rAC(Cy, - Cur) = Z > RC(7)

k=114,jeC)

which assumes a fixed scale for each community specified by the user.

SHuang, Kondapaneni, Silva, Singh. Multiscale community detection with pointwise mutual information. Ongoing.
Zexi Huang Graph Representation Learning April 5, 2023 42 /49




Multiscale commnity detecion
Multiscale community detection®
> RAC(7) =TIP(7) — " and RPMI(7) =1og(IIP(7)) — log(wn ")
> Clustered similarity as a quality function: 7(C;7) = >, .. Rij(7)
» Markov Stability [22] finds the best communities {C};} by maximizing

TAC(Cl,' ,Coy 1) = Z Z R

k=1 1i,jeCy

which assumes a fixed scale for each community specified by the user.
» We find {C}.} along with their natural scales {7} based on PMI:

PMI . E E le]
r (Cla'“7CC7Tln'“7Tc R

k=1 1,j€C}

SHuang, Kondapaneni, Silva, Singh. Multiscale community detection with pointwise mutual information. Ongoing.
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Graph representation learning for tasks on multiscale graphs Multiscale community detection

Empirical observation

—— 10-node —— 20-node —— 40-node —— 10-node —— 20-node —— 40-node
0.20 500
0.16 400
0.12 300
2 z
0.08 200
0.04 \ 100
0.00 0
0 1 4 5 0 1 4 5

2 3 2 3
Markov time T Markov time T

(a) SBM-(10, 20, 40) (b) AC (c) PMI

Figure: Quality functions based on PMI for communities of different sizes reach unique
peaks at different 7, revealing their natural scales, while those based on AC cannot.
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Graph representation learning for tasks on multiscale graphs Multiscale community detection

Empirical observation

—— 10-node —— 20-node —— 40-node —— 10-node —— 20-node —— 40-node
0.20 500
0.16 400
0.12 300
¢ z
0.08 200
0.04 \ 100
0.00 0
0 1 2 3 4 5 0 1 2 3 4 5
Markov time T Markov time T
(a) SBM-(10, 20, 40) (b) AC (c) PMI

Figure: Quality functions based on PMI for communities of different sizes reach unique
peaks at different 7, revealing their natural scales, while those based on AC cannot.

Theoretical analysis
» We have shown that 74¢(C; 7) monotonously decreases with .
» For rMI(C'; 7), monotonicity has only been proved for some cases.
Pl o B
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Multiscale anomaly detection’
» Existing work focuses on node-level anomaly within a particular
context [36, 37, 38, 39] or multiscale contexts [40, 41].

[} o
[
0040 o 2 t% ° 09 o .&
® o.\.’ > 0690 o
03 0% 000 .......,."
o @ ..OOOO ° ° ...0.0,.. °
e Q O Q @ o) Q
) 6%Pe 0 o | ® ...... ° 4
o° 0®
or by
3,
(a) Node-level anomalies (b) Subgraph-level anomalies

Figure: Real-world graphs have anomalies of different scales. Figures from [40].

7Arriola, Kosan, Huang, Singh. Multiscale anomaly detection with graph autoencoders. Ongoing.
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Spectral energy distribution patterns for anomalies

W Normal [ Node-level anomalies 1-scale anomalies W 2-scale anomalies [ 3-scale anomalies

50.00%
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10.00%
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A

Figure: Compared to normal nodes, the spectral energy distributions of anomalous
elements concentrate more on the high-frequency regions. Further, the smaller the

scale of the anomalies, the higher the frequency bands they dominate.
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Spectral localized Beta Wavelet GNNs
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(a) Heat kernels (b) Beta kernels

Figure: Spectral property comparison between heat kernels and Beta kernels. Beta
kernels contain different band-pass filters that facilitate multiscale anomaly detection.
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5. Conclusion and future work



(@L T TETGRELRTATERYIEN  Conclusion and future work

This dissertation demonstrates the importance of accounting for

the interplay between the rich graph information and
downstream task properties in graph representation learning.

Information-rich Applications

Graphs Node classification [1, 5]
Link icti 1,2,4
Multiscale graphs [1, 5, 6, 7] Graph ink prediction [1, 2, 4]
. . Community detection [1, 6]
Signed graphs [2] Representatlon
: . Measuring polarization [2]
Attributed graphs [3, 4, 5,7, 8, 9] Learning

Counterfactual explanation [3]
Heterogeneous graphs [8]

Anomaly detection [7, 8]
Text graphs [9]

Text classification [9]

Zexi Huang Graph Representation Learning April 5, 2023



(@L T TETGRELRTATERYIEN  Conclusion and future work

This dissertation demonstrates the importance of accounting for

the interplay between the rich graph information and
downstream task properties in graph representation learning.

Information-rich Applications

Graphs Node classification [1, 5]
Link icti 1,2,4
Multiscale graphs [1, 5, 6, 7] Graph ink prediction [1, 2, 4]
. . Community detection [1, 6]
Signed graphs [2] Representatlon
: . Measuring polarization [2]
Attributed graphs [3, 4, 5, 7, 8, 9] Learning

Counterfactual explanation [3]
Heterogeneous graphs [8]

Anomaly detection [7, 8]
Text graphs [9]

Text classification [9]

» Can we develop a universal architecture for different graphs & tasks?

» Can we understand/explain the model in the embedding space?
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