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Introduction Representation learning

Representation learning

“Extracting key information from raw data to enable effective data
science applications via deep neural networks.”

I For images: Convolutional Neural Networks (CNNs)
I For text: Transformers (e.g., ChatGPT)
I For graphs

Graph applications
I Social network analysis: community detection
I Product and video recommendation: link prediction
I Financial fraud detection: anomaly detection
I Novel drug discovery: graph classification
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Introduction Representation learning for information-rich graphs
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Node and edge attributes: descriptive information
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Introduction My research

My research

       

Multiscale graphs


Signed graphs


Attributed graphs


Heterogeneous graphs


Graph
Representation

Learning

Information-rich
Graphs

       

Node classification


Link prediction


Community detection


Measuring polarization


Applications

Counterfactual explanation


Anomaly detection

Text graphs


Text classification
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Introduction My research

       

Multiscale graphs [1, 5, 6, 7]


Signed graphs [2]


Attributed graphs [3, 4, 5, 7, 8, 9]


Heterogeneous graphs [8]


Graph
Representation

Learning

Information-rich
Graphs

       

Node classification [1, 5]


Link prediction [1, 2, 4]


Community detection [1, 6]


Measuring polarization [2]


Applications

Counterfactual explanation [3]


Anomaly detection [7, 8]

Text graphs [9]


Text classification [9]


1Huang, Silva, Singh. A broader picture of random-walk based graph embedding. KDD’21.

2Huang, Silva, Singh. POLE: Polarized embedding for signed networks. WSDM’22.
3Huang*, Kosan*, et al. GCFExplainer: Global counterfactual explainer for graph neural networks. WSDM’23.
4Huang, Kosan, Silva, Singh. Link prediction without graph neural networks. Under review.
5Ye, Huang, Hong, Singh. Graph convolutional networks meet neural diffusions. Under review.
6Huang, Kondapaneni, Silva, Singh. Multiscale community detection with pointwise mutual information. Ongoing.
7Arriola, Kosan, Huang, Sharma, Singh. Multiscale anomaly detection with graph autoencoders. Ongoing.
8Huang. Graph-based fraud detection in Kindle Direct Publishing. Amazon science internship’20,21.
9Huang. Graph-based text classification for Kindle content intelligence. Amazon science internship’22.
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Introduction Outline

Outline

1. Introduction

2. Graph representation learning for link prediction

3. Graph representation learning for graph classification

4. Graph representation learning for tasks on multiscale graphs

5. Conclusion and future work
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Graph representation learning for link prediction Link prediction background

Link prediction
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Link prediction: predicting the unobserved interactions (edges) between nodes given
the observed graph structure (topology) and other information (e.g., node attributes).
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Graph representation learning for link prediction Link prediction background

Random-walk based node embedding

(a) Use random-walks to capture
topological proximity (similarity)

(b) Find low-dimensional latent vectors
(embeddings) to preserve similarity
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Graph representation learning for link prediction Link prediction background

Link prediction based on node embedding

(a) Dot product [1, 2, 3]

+

(b) Classification based on combined embeddings [4, 5, 6]
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Graph representation learning for link prediction Random-walk based embedding

A broader picture of random-walk based embedding1

Random-walk based embedding methods

DeepWalk
LINE

Sampling

NetMF
NetSMF

InfiniteWalk

Factorization

PMI

Our work

Sampling

Multiscale
Our work

Factorization

Autocovariance

Standard

node2vec
APP
NERD

Our work

Sampling

NetMF
Our work

Factorization

PMI

Our work

Sampling

Our work

Factorization

Autocovariance

Non-standard

A
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Si
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I We present a unified framework for random-walk based embedding.
I We find that Autocovariance enables state-of-the-art link prediction.
1Huang, Silva, Singh. A broader picture of random-walk based graph embedding. KDD’21.
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Graph representation learning for link prediction Random-walk based embedding

Random-walk based similarity metrics

M : transition matrix π,Π: stationary distribution τ : random-walk scale

PMI: R = log(ΠM τ)− log(ππ>) Autocovariance: R = ΠM τ − ππ>
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Figure: Autocovariance with dot product ranking consistently outperforms PMI (with
either ranking scheme) in link prediction.
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Graph representation learning for link prediction Random-walk based embedding

Understanding the difference

predicted degree ∝ embedding norm ‖u‖ ∝

{
actual degree for AC
constant for PMI

Autocovariance captures heterogeneous degree distribution in graphs!

(a) PMI (b) Autocovariance
Figure: Autocovariance predicts more edges connecting to the hubs than PMI.
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Graph representation learning for link prediction Polarized signed embedding

Polarized embedding for effective signed link prediction2

Friendly ( ) Adversarial ( )

I We identify the key challenge of embedding polarized signed graphs.
I We develop polarized embedding for SOTA negative link prediction.

2Huang, Silva, Singh. POLE: Polarized embedding for signed networks. WSDM’22.
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Graph representation learning for link prediction Polarized signed embedding

Signed link prediction in polarized networks

Figure: A synthetic
polarized graph based on
the LFR benchmark [7].
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Figure: Distributions of the reconstructed similarity for
different types of node pairs in the polarized graph using (a)
unsigned [8] and (b) signed [6] embedding.
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Graph representation learning for link prediction Polarized signed embedding

POLE: polarized embedding
I Signed random-walks to capture both similarities:

Muv(t) =
∑

all length-t paths l between u and v

Prob(l)Sign(l)

I Prob(l) captures the unsigned similarity.
I Sign(l) based on the social balance theory captures the signed similarity.

– +
Prob(𝑙)

– –

Sign(𝑙)1/2 1/2

1/2 1/2

1/2 × 1/2 = 1/4

1/2 × 1/2 = 1/4

−1 × 1 = −1

−1 × −1 = 1
1

2

4

3

5

𝑙

1, 2, 3

1, 4, 5

I POLE: extends Autocovariance similarity [9, 8] to signed RW
R(t) = M(t)>WM(t)
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Graph representation learning for link prediction Polarized signed embedding

Polarized similarity consistency
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Figure: Polarized embedding (c) preserves polarized similarity consistency—negative
pairs are separated from other pairs in the similarity spectrum—while unsigned
embedding (a) and signed embedding (b) fail to do so.

Zexi Huang Graph Representation Learning April 5, 2023 16 / 49



Graph representation learning for link prediction Polarized signed embedding

Signed link prediction results
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Figure: Signed link prediction with link existence information performance comparison.
POLE outperforms all baselines in almost all datasets, especially for the negative links.
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Graph representation learning for link prediction Link prediction without GNNs

Attributed graph embedding and graph neural networks
I GNNs [10, 11, 12] are a powerful DL paradigm that learns to generate

better node features (embeddings) using structure information.
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(a) Input attributed graph (b) GNN message-passing (c) Pooling and classification

I Advantages over topological heuristics for link prediction:
I Potential to discover new heuristics via supervised learning.
I Natural incorporation of node attribute information.
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Graph representation learning for link prediction Link prediction without GNNs

Challenges of GNNs for link prediction
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Figure: The attribute-centric message-passing mechanism is effective for tasks on the
topology, e.g., node classification. Link prediction, however, is a task for the topology.

Are there better alternatives to message-passing for combining
node attributes and graph topology for link prediction?
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Graph representation learning for link prediction Link prediction without GNNs

Challenges of GNNs for link prediction

Table: Common real-world datasets for link prediction benchmark.

#Nodes #Edges Avg. degree Density Class ratio

Cora 2,708 5,278 3.90 0.14% 1:695
CiteSeer 3,327 4,552 2.74 0.08% 1:1216
PubMed 19,717 44,324 4.50 0.02% 1:4385
Photo 7,650 119,081 31.13 0.41% 1:246

Computers 13,752 245,861 35.76 0.26% 1:385

Have GNN-based link prediction methods properly addressed
the intrinsic class imbalance?
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Graph representation learning for link prediction Link prediction without GNNs

Supervised link prediction evaluation
I Existing work [13, 14, 15, 16, 17, 18, 19, 20, 21] adopts AUC and AP

with biased testing (downsampling negative/disconnected pairs),
which pictures an overly optimistic view of model performance.

I We argue for evaluation under unbiased testing, which has been
widely applied in unsupervised link prediction [1, 3, 8] and IR.

Supervised link prediction training
I Existing work uses binary cross entropy loss with biased training.

I It discards potentially useful evidence from negative pairs.
I It induces the model to overestimate the probability of positive pairs.
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Graph representation learning for link prediction Link prediction without GNNs

A simpler, faster, and stronger paradigm for link prediction3

I Explore alternative frameworks to combine topology and attributes
I Address the problem of class imbalance in training and testing
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3Huang, Kosan, Silva, Singh. Link prediction without graph neural networks. Under review.
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Graph learning
I Graph augmentation: Ẽ = E + {(u, v) | s(xu, xv) > sη}

I Trained weighting: wuv = MLP([xu + xv; |xu − xv|]; θ)
I Combined weights: Ãuv = αAuv +(1−α)(βwuv +(1−β)s(xu, xv))
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Topological heuristic
I Applying Autocovariance [22, 8] to the enhanced graph Ã:

R =
D̃

vol(G̃)
(D̃−1Ã)t − d̃d̃>

vol2(G̃)
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N-pair loss [23]
I Contrasting each positive edge (u, v) with a set of negative pairs

N(u, v) whose size equals to the class ratio (unbiased training):

L(θ) = −
∑

(u,v)∈E

log
exp(Ruv)

exp(Ruv) +
∑

(p,q)∈N(u,v) exp(Rpq)
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Graph representation learning for link prediction Link prediction without GNNs

Table: Link prediction performance comparison (mean ± std AP). Gelato outperforms
the best GNN-based method, Neo-GNN, by 145% and Autocovariance by 53%.

∗ Run only once as each run takes ~100 hrs; *** Each run takes >1000 hrs; OOM: Out Of Memory. .
Cora CiteSeer PubMed Photo Computers

GNN

GAE 0.27 ± 0.02 0.66 ± 0.11 0.26 ± 0.03 0.28 ± 0.02 0.30 ± 0.02
SEAL 1.89 ± 0.74 0.91 ± 0.66 *** 10.49 ± 0.86 6.84*
HGCN 0.82 ± 0.03 0.74 ± 0.10 0.35 ± 0.01 2.11 ± 0.10 2.30 ± 0.14
LGCN 1.14 ± 0.04 0.86 ± 0.09 0.44 ± 0.01 3.53 ± 0.05 1.96 ± 0.03

TLC-GNN 0.29 ± 0.09 0.35 ± 0.18 OOM 1.77 ± 0.11 OOM
Neo-GNN 2.05 ± 0.61 1.61 ± 0.36 1.21 ± 0.14 10.83 ± 1.53 6.75*
NBFNet 1.36 ± 0.17 0.77 ± 0.22 *** 11.99 ± 1.60 ***
BScNets 0.32 ± 0.08 0.20 ± 0.06 0.22 ± 0.08 2.47 ± 0.18 1.45 ± 0.10
WalkPool 2.04 ± 0.07 1.39 ± 0.11 1.31* OOM OOM

Topological
Heuristics

CN 1.10 ± 0.00 0.74 ± 0.00 0.36 ± 0.00 7.73 ± 0.00 5.09 ± 0.00
AA 2.07 ± 0.00 1.24 ± 0.00 0.45 ± 0.00 9.67 ± 0.00 6.52 ± 0.00
RA 2.02 ± 0.00 1.19 ± 0.00 0.33 ± 0.00 10.77 ± 0.00 7.71 ± 0.00
AC 2.43 ± 0.00 2.65 ± 0.00 2.50 ± 0.00 16.63 ± 0.00 11.64 ± 0.00

Attributes +
Topology

MLP 0.30 ± 0.05 0.44 ± 0.09 0.14 ± 0.06 1.01 ± 0.26 0.41 ± 0.23
Cos 0.42 ± 0.00 1.89 ± 0.00 0.07 ± 0.00 0.11 ± 0.00 0.07 ± 0.00

MLP+AC 3.24 ± 0.03 1.95 ± 0.05 2.61 ± 0.06 15.99 ± 0.21 11.25 ± 0.13
Cos+AC 3.60 ± 0.00 4.46 ± 0.00 0.51 ± 0.00 10.01 ± 0.00 5.20 ± 0.00

MLP+Cos+AC 3.39 ± 0.06 4.15 ± 0.14 0.55 ± 0.03 10.88 ± 0.09 5.75 ± 0.11

Gelato 3.90 ± 0.03 4.55 ± 0.02 2.88 ± 0.09 25.68 ± 0.53 18.77 ± 0.19
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Graph representation learning for link prediction Summary

Section summary:

I We investigated the problem of representation learning for effective
link prediction in scale-free, signed, and attributed networks.

I We scrutinized popular representation learning paradigms (node
embedding and GNNs) and proposed novel solutions leveraging
random-walk dynamics, social theories, and graph learning.

I Our methods enable state-of-the-art link prediction performance as
verified in various real-world datasets.
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Graph representation learning for graph classification

Outline

1. Introduction

2. Graph representation learning for link prediction

3. Graph representation learning for graph classification

4. Graph representation learning for tasks on multiscale graphs

5. Conclusion and future work
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Graph representation learning for graph classification Graph classification background

Graph classification
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Graph classification: Given a collection of graphs, predict the label of each unknown
graph based on known graphs and labels.
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Graph representation learning for graph classification Graph classification background

Graph neural networks for graph classification
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(a) Input attributed graph (b) GNN message-passing (c) Pooling and classification

I GNNs achieve state-of-the-art performance in graph classification.

How can we understand the prediction made by GNNs in
high-stakes decision making?
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Graph representation learning for graph classification Model understanding background

Model understanding and explanation

I Deep predictive model {Foreigner=True, Num_Loans=1,
Missed_Payments=2} ⇒ Denied

I Feature importance [24, 25]
Foreigner

Num_Loans

Missed_Payments
Importance

I Local counterfactual [26, 27] {Foreigner=True, Num_Loans=1,
Missed_Payments=1} ⇒ Approved

I Global counterfactual [28] If Foreigner=True and Num_Loans≥1
then Missed_Payments≤1 for approval
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Graph representation learning for graph classification Model understanding background

Understanding GNNs

I Graph classification GNN CH
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Formaldehyde

Mutagen

I Subgraph importance [29, 30] CH
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H

Formaldehyde

Important subgraph

I Local counterfactual [31, 32] CH

O
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Formic acid

Non-mutagen
H

Can we generate global counterfactual explanation for GNNs?
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Graph representation learning for graph classification Global counterfactual explainer for GNNs

First global graph counterfactual explainer for GNNs4

I Global recourse: For any undesired graph G ∈ G (GNN(G) = 0),
the explanation r should provide a recourse: GNN(r(G)) = 1.

I Interpretable: r should be (much) easier to understand (than GNN).
Explanation based on counterfactual summary
I Represent r with a summary set C of counterfactual graphs.
I The recourse for G is the minimal cost (distance) summary graph:

rC(G) = argmin
C∈C

dist(G,C)

where dist(·, ·) is any distance metric between graphs (e.g., GED).

4Huang*, Kosan*, et al. Global counterfactual explainer for graph neural networks. WSDM’23.
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Graph representation learning for graph classification Global counterfactual explainer for GNNs

Quantifying explanation quality
I Cost: minimize the overall recourse cost for all undesired graphs:

cost(rC) =
∑
G∈G

min
C∈C

dist(G,C)

I Coverage: maximize the number of undesired graphs that have an
actionable recourse (i.e., within a cost budget B):

cover(rC) = |{G ∈ G | min
C∈C

dist(G,C) ≤ B}|

I Interpretability: minimize the size of the counterfactual summary:

size(rC) = |C|
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Graph representation learning for graph classification Global counterfactual explainer for GNNs

Structuring counterfactual summary search space

I Graph edit map: A (meta)graph of
candidate graphs connected by single
graph edits.

Node/edge addition

Node/edge 
removal Node label change

Generating diverse counterfactual summary
I Vertex-reinforced random-walk: Converges to diverse graphs [33].
I Guided transitions: Biases towards good counterfactual summaries.
I Random teleportation back: Manages the exponential search space.
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Graph representation learning for graph classification Global counterfactual explainer for GNNs

Comparison with summary of local counterfactuals
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Figure: Global counterfactual quality comparison. GCFExplainer consistently
outperforms the baselines with higher coverage and lower cost across different sizes.
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Graph representation learning for graph classification Global counterfactual explainer for GNNs

Visualizing global counterfactuals
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Figure: The global counterfactual explanation graph (third row) presents a high-level
recourse rule—changing ketones and ethers into aldehydes—to combat HIV, while the
edge removals in local counterfactual examples (second row) are hard to generalize.
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Graph representation learning for graph classification Global counterfactual explainer for GNNs

Section summary:

I We formulate the novel problem of global counterfactual reasoning
and explanation of GNNs for graph classification.

I We present GCFExplainer, the first global counterfactual explainer
for GNNs that generates representative counterfactual summaries.

I We demonstrate the effectiveness and usefulness of GCFExplainer
in providing high-level recourse for GNN-based graph classification,
in the context of drug property prediction and discovery.
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Graph representation learning for tasks on multiscale graphs

Outline

1. Introduction

2. Graph representation learning for link prediction

3. Graph representation learning for graph classification

4. Graph representation learning for tasks on multiscale graphs

5. Conclusion and future work
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Graph representation learning for tasks on multiscale graphs Multiscale graphs

Multiscale graphs

Figure: Global network of airports connected by domestic and international fights.
Nodes in multiscale graphs form dense clusters at different structural scales (countries
and continents here).
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Graph representation learning for tasks on multiscale graphs Graph neural diffusion networks

Graph neural diffusion networks5

I Multiscale message-passing as graph diffusions:

u(K) =
K−1∑
k=0

αkM
ku(0)

I Existing work [34, 35] adopts fixed diffusion weights αk.

I We propose to learn the diffusion weights directly from data:

u(K) = f([u(0);Mu(0); ...;MK−1u(0)]; θ)

I Key result: The learned weights are adaptable to different datasets,
leading to better semi-supervised node classification performance.

5Ye, Huang, Hong, Singh. Graph convolutional networks meet neural diffusions. Under review.
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Graph representation learning for tasks on multiscale graphs Multiscale community detection

Multiscale community detection6

I RAC(τ) = ΠP (τ)− ππ> and RPMI(τ) = log(ΠP (τ))− log(ππ>)

I Clustered similarity as a quality function: r(C; τ) =
∑

i,j∈C Rij(τ)
I Markov Stability [22] finds the best communities {Ck} by maximizing

rAC(C1, · · · , Cc; τ) =
c∑

k=1

∑
i,j∈Ck

RAC
ij (τ)

which assumes a fixed scale for each community specified by the user.
I We find {Ck} along with their natural scales {τk} based on PMI:

rPMI(C1, · · · , Cc; τ1, · · · , τc) =
c∑

k=1

∑
i,j∈Ck

RPMI
ij (τk)

6Huang, Kondapaneni, Silva, Singh. Multiscale community detection with pointwise mutual information. Ongoing.
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Graph representation learning for tasks on multiscale graphs Multiscale community detection

Empirical observation

(a) SBM-(10, 20, 40)
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Figure: Quality functions based on PMI for communities of different sizes reach unique
peaks at different τ , revealing their natural scales, while those based on AC cannot.

Theoretical analysis
I We have shown that rAC(C; τ) monotonously decreases with τ .
I For rPMI(C; τ), monotonicity has only been proved for some cases.
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Graph representation learning for tasks on multiscale graphs Multiscale anomaly detection

Multiscale anomaly detection7

I Existing work focuses on node-level anomaly within a particular
context [36, 37, 38, 39] or multiscale contexts [40, 41].
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(a) Node-level anomalies
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(b) Subgraph-level anomalies

Figure: Real-world graphs have anomalies of different scales. Figures from [40].
7Arriola, Kosan, Huang, Singh. Multiscale anomaly detection with graph autoencoders. Ongoing.
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Graph representation learning for tasks on multiscale graphs Multiscale anomaly detection

Spectral energy distribution patterns for anomalies
�����������	���
� �
�����������������

����	����	���������� �!�"�����#�!���$�%�&�!������������'��(��������)*����������!��
����������������� ���

Figure: Compared to normal nodes, the spectral energy distributions of anomalous
elements concentrate more on the high-frequency regions. Further, the smaller the
scale of the anomalies, the higher the frequency bands they dominate.
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Graph representation learning for tasks on multiscale graphs Multiscale anomaly detection

Spectral localized Beta Wavelet GNNs
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Figure: Spectral property comparison between heat kernels and Beta kernels. Beta
kernels contain different band-pass filters that facilitate multiscale anomaly detection.
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Conclusion and future work Conclusion and future work

This dissertation demonstrates the importance of accounting for
the interplay between the rich graph information and
downstream task properties in graph representation learning.

       

Multiscale graphs [1, 5, 6, 7]


Signed graphs [2]


Attributed graphs [3, 4, 5, 7, 8, 9]


Heterogeneous graphs [8]


Graph
Representation

Learning

Information-rich
Graphs

       

Node classification [1, 5]


Link prediction [1, 2, 4]
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