Learning Representations for Information-rich Graphs

PhD Defense

Zexi Huang

Committee: Ambuj Singh (Chair), Yu-Xiang Wang, Xifeng Yan Department of Computer Science, University of California, Santa Barbara

April 5, 2023

"Extracting key information from raw data to enable effective data science applications via deep neural networks."

"Extracting key information from raw data to enable effective data science applications via deep neural networks."

- ► For images: Convolutional Neural Networks (CNNs)
- ► For text: Transformers (e.g., ChatGPT)

"Extracting key information from raw data to enable effective data science applications via deep neural networks."

- ► For images: Convolutional Neural Networks (CNNs)
- ► For text: Transformers (e.g., ChatGPT)
- For graphs

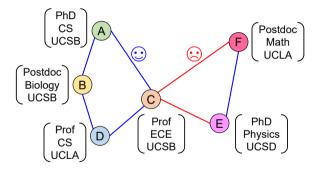
"Extracting key information from raw data to enable effective data science applications via deep neural networks."

- ► For images: Convolutional Neural Networks (CNNs)
- ► For text: Transformers (e.g., ChatGPT)
- For graphs

Graph applications

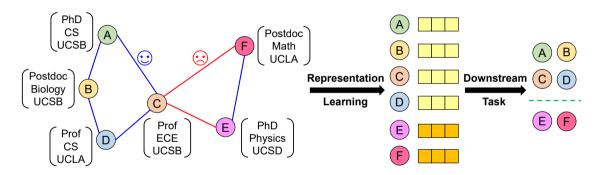
- Social network analysis: community detection
- Product and video recommendation: link prediction
- Financial fraud detection: anomaly detection
- ► Novel drug discovery: graph classification

Representation learning for information-rich graphs



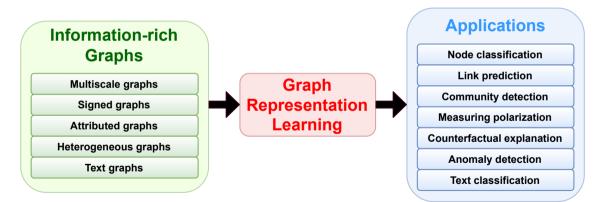
Graph structure: relationship information Node and edge attributes: descriptive information

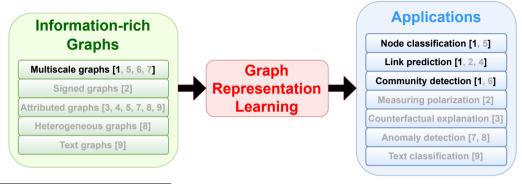
Representation learning for information-rich graphs



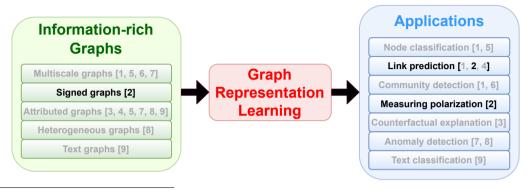
Graph structure: relationship information Node and edge attributes: descriptive information

My research



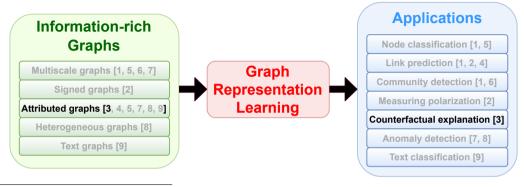


¹Huang, Silva, Singh, A broader picture of random-walk based graph embedding, KDD'21.



¹Huang, Silva, Singh, A broader picture of random-walk based graph embedding, KDD'21.

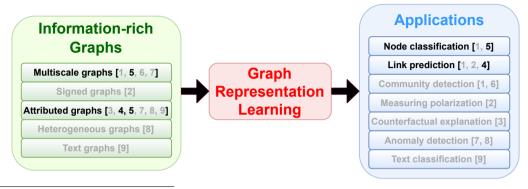
²Huang, Silva, Singh, POLE: Polarized embedding for signed networks, WSDM'22.



¹Huang, Silva, Singh, A broader picture of random-walk based graph embedding, KDD'21.

²Huang, Silva, Singh, POLE: Polarized embedding for signed networks, WSDM'22.

³Huang*, Kosan*, et al. GCFExplainer: Global counterfactual explainer for graph neural networks, WSDM'23.



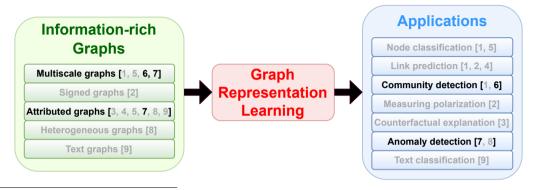
¹Huang, Silva, Singh, A broader picture of random-walk based graph embedding, KDD'21.

²Huang, Silva, Singh. POLE: Polarized embedding for signed networks. WSDM'22.

³Huang*, Kosan*, et al. GCFExplainer: Global counterfactual explainer for graph neural networks. WSDM'23.

⁴Huang, Kosan, Silva, Singh. Link prediction without graph neural networks. Under review.

⁵Ye, **Huang**, Hong, Singh. Graph convolutional networks meet neural diffusions. Under review.



¹Huang, Silva, Singh, A broader picture of random-walk based graph embedding, KDD'21.

²Huang, Silva, Singh, POLE: Polarized embedding for signed networks, WSDM'22.

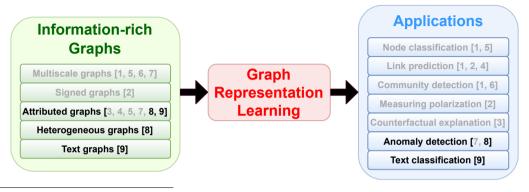
³Huang*, Kosan*, et al. GCFExplainer: Global counterfactual explainer for graph neural networks, WSDM'23.

⁴Huang, Kosan, Silva, Singh. Link prediction without graph neural networks. Under review.

⁵Ye, **Huang**, Hong, Singh. Graph convolutional networks meet neural diffusions. Under review.

⁶Huang, Kondapaneni, Silva, Singh. Multiscale community detection with pointwise mutual information. Ongoing.

⁷Arriola, Kosan, **Huang**, Sharma, Singh. Multiscale anomaly detection with graph autoencoders. Ongoing.



 $^{^1}$ Huang, Silva, Singh. A broader picture of random-walk based graph embedding. KDD'21.

²Huang, Silva, Singh. POLE: Polarized embedding for signed networks. WSDM'22.

³Huang*, Kosan*, et al. GCFExplainer: Global counterfactual explainer for graph neural networks. WSDM'23.

⁴Huang, Kosan, Silva, Singh. Link prediction without graph neural networks. Under review.

⁵Ye, **Huang**, Hong, Singh. Graph convolutional networks meet neural diffusions. Under review.

⁶Huang, Kondapaneni, Silva, Singh. Multiscale community detection with pointwise mutual information. Ongoing.

⁷Arriola, Kosan, **Huang**, Sharma, Singh. Multiscale anomaly detection with graph autoencoders. Ongoing.

⁸Huang. Graph-based fraud detection in Kindle Direct Publishing. Amazon science internship'20,21.

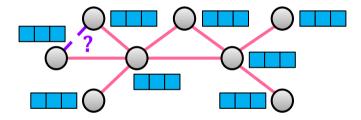
⁹**Huang.** Graph-based text classification for Kindle content intelligence. Amazon science internship 22.

Outline

1. Introduction

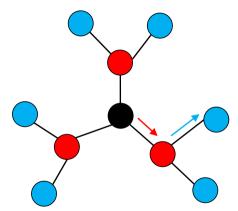
- 2. Graph representation learning for link prediction
- 3. Graph representation learning for graph classification
- 4. Graph representation learning for tasks on multiscale graphs
- 5. Conclusion and future work

Link prediction

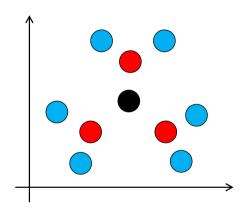


Link prediction: predicting the unobserved interactions (edges) between nodes given the observed graph structure (topology) and other information (e.g., node attributes).

Random-walk based node embedding

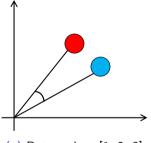


(a) Use random-walks to capture topological proximity (similarity)

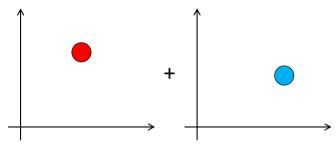


(b) Find low-dimensional latent vectors (embeddings) to preserve similarity

Link prediction based on node embedding

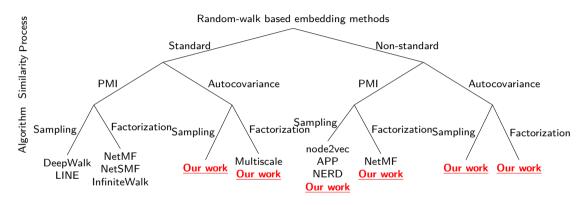


(a) Dot product [1, 2, 3]



(b) Classification based on combined embeddings [4, 5, 6]

A broader picture of random-walk based embedding¹



- We present a unified framework for random-walk based embedding.
- We find that Autocovariance enables state-of-the-art link prediction.

10 / 49

¹Huang, Silva, Singh. A broader picture of random-walk based graph embedding. KDD'21.

M: transition matrix π, Π : stationary distribution τ : random-walk scale

M: transition matrix π, Π : stationary distribution τ : random-walk scale

PMI:
$$R = \log(\Pi M^{\tau}) - \log(\pi \pi^{\top})$$

M: <u>transition matrix</u> π,Π : <u>stationary distribution</u> τ : <u>random-walk scale</u>

PMI:
$$R = \log(\Pi M^{\tau}) - \log(\pi \pi^{\top})$$
 Autocovariance: $R = \Pi M^{\tau} - \pi \pi^{\top}$

M: transition matrix π, Π : stationary distribution τ : random-walk scale

PMI:
$$R = \log(\Pi M^{\tau}) - \log(\pi \pi^{\top})$$
 Autocovariance: $R = \Pi M^{\tau} - \pi \pi^{\top}$

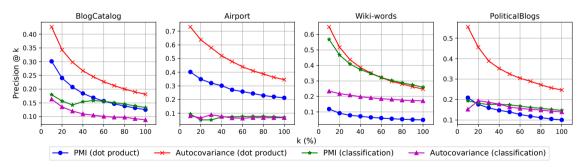


Figure: Autocovariance with dot product ranking consistently outperforms PMI (with either ranking scheme) in link prediction.

Understanding the difference

 $\text{predicted degree} \propto \text{embedding norm } \|\mathbf{u}\| \propto \begin{cases} \text{actual degree} & \text{for AC} \\ \text{constant} & \text{for PMI} \end{cases}$

Understanding the difference

$$\text{predicted degree} \propto \text{embedding norm } \|\mathbf{u}\| \propto \begin{cases} \text{actual degree} & \text{for AC} \\ \text{constant} & \text{for PMI} \end{cases}$$

Autocovariance captures heterogeneous degree distribution in graphs!

Understanding the difference

 $\text{predicted degree} \propto \text{embedding norm } \|\mathbf{u}\| \propto \begin{cases} \text{actual degree} & \text{for AC} \\ \text{constant} & \text{for PMI} \end{cases}$

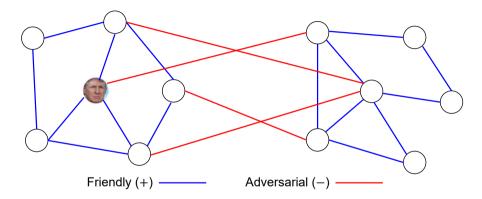
Autocovariance captures heterogeneous degree distribution in graphs!

(a) PMI

(b) Autocovariance

Figure: Autocovariance predicts more edges connecting to the hubs than PMI.

Polarized embedding for effective signed link prediction²

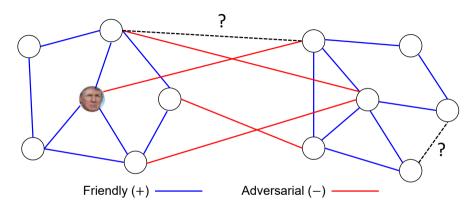


Zexi Huang Graph Representation Learning April 5, 2023

13 / 49

²Huang, Silva, Singh. POLE: Polarized embedding for signed networks. WSDM'22.

Polarized embedding for effective signed link prediction²



- We identify the key challenge of embedding polarized signed graphs.
- ▶ We develop polarized embedding for SOTA negative link prediction.

²**Huang**, Silva, Singh. POLE: Polarized embedding for signed networks. WSDM'22.

April 5, 2023

14 / 49

Signed link prediction in polarized networks

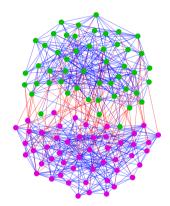


Figure: A synthetic polarized graph based on the LFR benchmark [7].

Signed link prediction in polarized networks

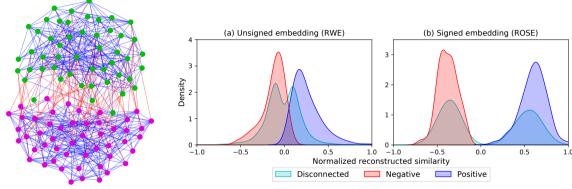


Figure: A synthetic polarized graph based on the LFR benchmark [7].

Figure: Distributions of the reconstructed similarity for different types of node pairs in the polarized graph using (a) unsigned [8] and (b) signed [6] embedding.

POLE: polarized embedding

▶ Signed random-walks to capture both similarities:

$$M_{uv}(t) = \sum_{\substack{\mathsf{all \ length-} t \ \mathsf{paths} \ l \ \mathsf{between} \ u \ \mathsf{and} \ v}} \mathsf{Prob}(l) \mathsf{Sign}(\red{l})$$

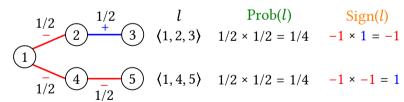
POLE: polarized embedding

Signed random-walks to capture both similarities:

$$M_{uv}(t) = \sum$$
 $\operatorname{Prob}(l)\operatorname{Sign}(l)$

all length-t paths l between u and v

- ► Prob(*l*) captures the unsigned similarity.
- $ightharpoonup \operatorname{Sign}(l)$ based on the social balance theory captures the signed similarity.



POLE: polarized embedding

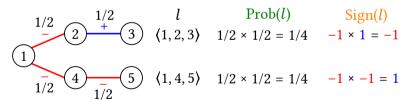
Signed random-walks to capture both similarities:

$$M_{uv}(t) = \sum$$
 Prob(l)Sign(l)

all length-t paths l between u and v

Prob(l) captures the unsigned similarity.

Sign(l) based on the social balance theory captures the signed similarity.



▶ POLE: extends Autocovariance similarity [9, 8] to signed RW

$$R(t) = M(t)^{\mathsf{T}} W M(t)$$

Zexi Huang

Polarized similarity consistency

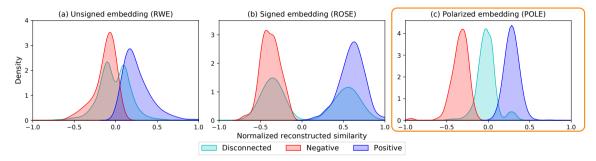


Figure: Polarized embedding (c) preserves *polarized similarity consistency*—negative pairs are separated from other pairs in the similarity spectrum—while unsigned embedding (a) and signed embedding (b) fail to do so.

Signed link prediction results

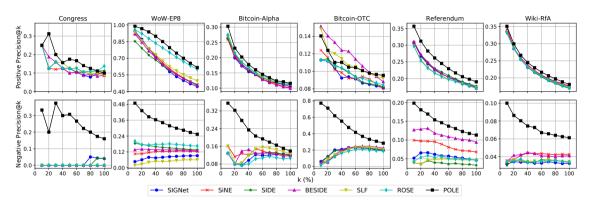
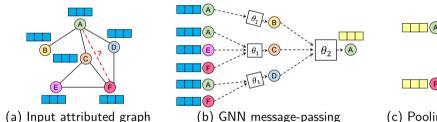


Figure: Signed link prediction with link existence information performance comparison. POLE outperforms all baselines in almost all datasets, especially for the negative links.

Zexi Huang

Attributed graph embedding and graph neural networks

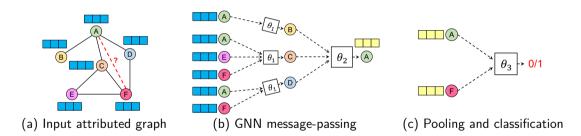
▶ GNNs [10, 11, 12] are a powerful DL paradigm that learns to generate better node features (embeddings) using structure information.



(c) Pooling and classification

Attributed graph embedding and graph neural networks

▶ GNNs [10, 11, 12] are a powerful DL paradigm that learns to generate better node features (embeddings) using structure information.



- ► Advantages over topological heuristics for link prediction:
 - ▶ Potential to discover new heuristics via **supervised learning**.
 - Natural incorporation of node attribute information.

Zexi Huang

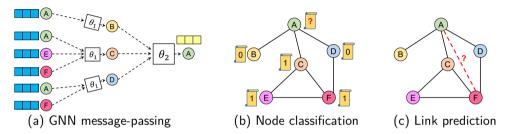


Figure: The attribute-centric message-passing mechanism is effective for tasks **on** the topology, e.g., node classification. Link prediction, however, is a task **for** the topology.

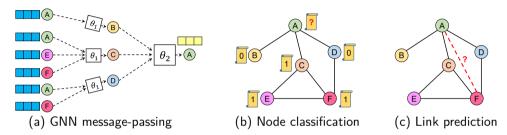


Figure: The attribute-centric message-passing mechanism is effective for tasks **on** the topology, e.g., node classification. Link prediction, however, is a task **for** the topology.

Are there better alternatives to message-passing for combining node attributes and graph topology for link prediction?

Table: Common real-world datasets for link prediction benchmark.

	#Nodes	#Edges	Avg. degree	Density	Class ratio
Cora	2,708	5,278	3.90	0.14%	1:695
CITESEER	3,327	4,552	2.74	0.08%	1:1216
PubMed	19,717	44,324	4.50	0.02%	1:4385
Рното	7,650	119,081	31.13	0.41%	1:246
Computers	13,752	245,861	35.76	0.26%	1:385

Table: Common real-world datasets for link prediction benchmark.

	#Nodes	#Edges	Avg. degree	Density	Class ratio
Cora	2,708	5,278	3.90	0.14%	1:695
CiteSeer	3,327	4,552	2.74	0.08%	1:1216
PubMed	19,717	44,324	4.50	0.02%	1:4385
Рното	7,650	119,081	31.13	0.41%	1:246
Computers	13,752	245,861	35.76	0.26%	1:385

Have GNN-based link prediction methods properly addressed the intrinsic class imbalance?

Supervised link prediction evaluation

▶ Existing work [13, 14, 15, 16, 17, 18, 19, 20, 21] adopts AUC and AP with *biased testing* (downsampling negative/disconnected pairs), which pictures an **overly optimistic** view of model performance.

Supervised link prediction evaluation

- ► Existing work [13, 14, 15, 16, 17, 18, 19, 20, 21] adopts AUC and AP with *biased testing* (downsampling negative/disconnected pairs), which pictures an **overly optimistic** view of model performance.
- ► We argue for evaluation under *unbiased testing*, which has been widely applied in unsupervised link prediction [1, 3, 8] and IR.

Supervised link prediction evaluation

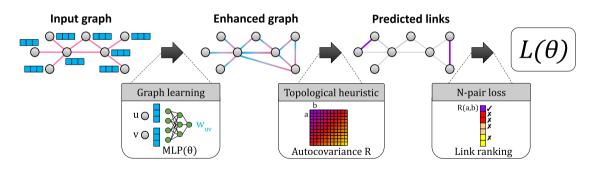
- ➤ Existing work [13, 14, 15, 16, 17, 18, 19, 20, 21] adopts AUC and AP with *biased testing* (downsampling negative/disconnected pairs), which pictures an **overly optimistic** view of model performance.
- ► We argue for evaluation under *unbiased testing*, which has been widely applied in unsupervised link prediction [1, 3, 8] and IR.

Supervised link prediction training

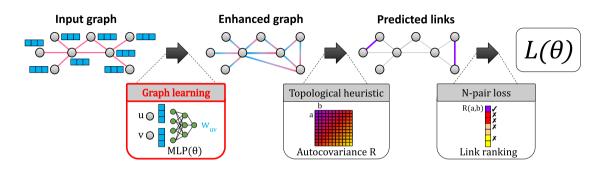
- Existing work uses binary cross entropy loss with *biased training*.
 - lt discards potentially useful evidence from negative pairs.
 - It induces the model to **overestimate** the probability of positive pairs.

A simpler, faster, and stronger paradigm for link prediction³

- Explore alternative frameworks to combine topology and attributes
- ▶ Address the problem of class imbalance in training and testing

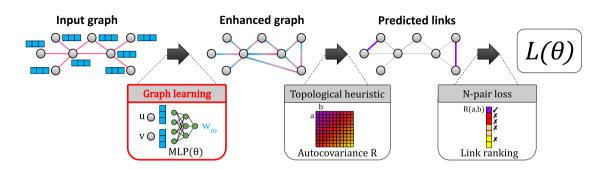


³Huang, Kosan, Silva, Singh, Link prediction without graph neural networks. Under review.



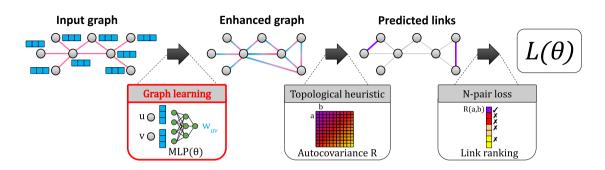
Graph learning

▶ Graph augmentation: $\widetilde{E} = E + \{(u, v) \mid s(x_u, x_v) > s_\eta\}$



Graph learning

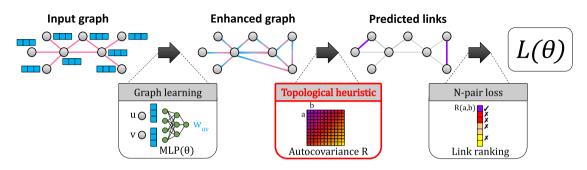
- ▶ Graph augmentation: $\widetilde{E} = E + \{(u, v) \mid s(x_u, x_v) > s_n\}$
- ► Trained weighting: $w_{uv} = \text{MLP}([x_u + x_v; |x_u x_v|]; \theta)$



Graph learning

- ▶ Graph augmentation: $\widetilde{E} = E + \{(u, v) \mid s(x_u, x_v) > s_\eta\}$
- ► Trained weighting: $w_{uv} = \text{MLP}([x_u + x_v; |x_u x_v|]; \theta)$
- ► Combined weights: $\widetilde{A}_{uv} = \alpha A_{uv} + (1 \alpha)(\beta w_{uv} + (1 \beta)s(x_u, x_v))$

Zexi Huang



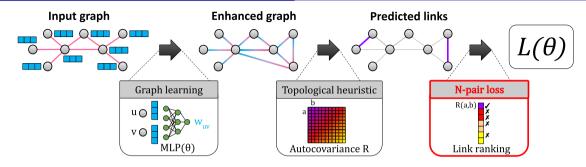
Topological heuristic

▶ Applying Autocovariance [22, 8] to the enhanced graph \widetilde{A} :

$$R = \frac{\widetilde{D}}{\operatorname{vol}(\widetilde{G})} (\widetilde{D}^{-1} \widetilde{A})^t - \frac{\widetilde{d}\widetilde{d}^{\top}}{\operatorname{vol}^2(\widetilde{G})}$$

Zexi Huang

Graph Representation Learning



N-pair loss [23]

Contrasting each positive edge (u, v) with a set of negative pairs N(u, v) whose size equals to the class ratio (unbiased training):

$$L(\theta) = -\sum_{(u,v)\in E} \log \frac{\exp(R_{uv})}{\exp(R_{uv}) + \sum_{(p,q)\in N(u,v)} \exp(R_{pq})}$$

Zexi Huang

* Run only once	e as each run takes ${\sim}1$	00 hrs; *** Ea	ch run takes $>\!10$	000 hrs; OOM	: Out Of Memory.	
		Cora	CITESEER	PubMed	Рното	Computers
	GAE	0.27 ± 0.02	0.66 ± 0.11	0.26 ± 0.03	0.28 ± 0.02	0.30 ± 0.02
	SEAL	1.89 ± 0.74	0.91 ± 0.66	***	10.49 ± 0.86	6.84*
	HGCN	0.82 ± 0.03	0.74 ± 0.10	0.35 ± 0.01	2.11 ± 0.10	2.30 ± 0.14
	LGCN	1.14 ± 0.04	0.86 ± 0.09	0.44 ± 0.01	3.53 ± 0.05	1.96 ± 0.03
GNN	TLC-GNN	0.29 ± 0.09	0.35 ± 0.18	OOM	1.77 ± 0.11	OOM
	Neo-GNN	2.05 ± 0.61	1.61 ± 0.36	1.21 ± 0.14	10.83 ± 1.53	<u>6.75</u> *
	NBFNet	1.36 ± 0.17	0.77 ± 0.22	***	11.99 ± 1.60	***
	BScNets	0.32 ± 0.08	0.20 ± 0.06	0.22 ± 0.08	2.47 ± 0.18	1.45 ± 0.10
	WalkPool	2.04 ± 0.07	1.39 ± 0.11	1.31*	OOM	OOM

* Run only once as	each run takes ~1	100 hrs; *** Ea	ch run takes $>\!10$	000 hrs; OOM	Out Of Memory.	
		Cora	CITESEER	PubMed	Рното	Computers
	GAE	0.27 ± 0.02	0.66 ± 0.11	0.26 ± 0.03	0.28 ± 0.02	0.30 ± 0.02
	SEAL	1.89 ± 0.74	0.91 ± 0.66	***	10.49 ± 0.86	6.84 [*]
	HGCN	0.82 ± 0.03	0.74 ± 0.10	0.35 ± 0.01	2.11 ± 0.10	2.30 ± 0.14
	LGCN	1.14 ± 0.04	0.86 ± 0.09	0.44 ± 0.01	3.53 ± 0.05	1.96 ± 0.03
GNN	TLC-GNN	0.29 ± 0.09	0.35 ± 0.18	OOM	1.77 ± 0.11	OOM
0	Neo-GNN	2.05 ± 0.61	1.61 ± 0.36	1.21 ± 0.14	10.83 ± 1.53	6.75* ***
	NBFNet	1.36 ± 0.17	0.77 ± 0.22	***	11.99 ± 1.60	***
	BScNets	0.32 ± 0.08	0.20 ± 0.06	0.22 ± 0.08	2.47 ± 0.18	1.45 ± 0.10
	WalkPool	2.04 ± 0.07	1.39 ± 0.11	1.31*	ООМ	MOO
	CN	1.10 ± 0.00	0.74 ± 0.00	0.36 ± 0.00	7.73 ± 0.00	5.09 ± 0.00
Topological	AA	2.07 ± 0.00	1.24 ± 0.00	0.45 ± 0.00	9.67 ± 0.00	6.52 ± 0.00
Heuristics	RA	2.02 ± 0.00	1.19 ± 0.00	0.33 ± 0.00	10.77 ± 0.00	7.71 ± 0.00
neuristics	AC	2.43 ± 0.00	2.65 ± 0.00	2.50 ± 0.00	16.63 ± 0.00	11.64 ± 0.00

* Run only once as	s each run takes $\sim\!10$	00 hrs; *** Ea	ch run takes $>$ 10	000 hrs; OOM:	Out Of Memory.	
		Cora	CITESEER	PubMed	Рното	Computers
	GAE	0.27 ± 0.02	0.66 ± 0.11	0.26 ± 0.03	0.28 ± 0.02	0.30 ± 0.02
	SEAL	1.89 ± 0.74	0.91 ± 0.66	***	10.49 ± 0.86	6.84*
	HGCN	0.82 ± 0.03	0.74 ± 0.10	0.35 ± 0.01	2.11 ± 0.10	2.30 ± 0.14
	LGCN	1.14 ± 0.04	0.86 ± 0.09	0.44 ± 0.01	3.53 ± 0.05	1.96 ± 0.03
GNN	TLC-GNN	0.29 ± 0.09	0.35 ± 0.18	OOM	1.77 ± 0.11	OOM
	Neo-GNN	2.05 ± 0.61	1.61 ± 0.36	1.21 ± 0.14	10.83 ± 1.53	<u>6.75</u> *
	NBFNet	1.36 ± 0.17	0.77 ± 0.22	***	11.99 ± 1.60	***
	BScNets	0.32 ± 0.08	0.20 ± 0.06	0.22 ± 0.08	2.47 ± 0.18	1.45 ± 0.10
	WalkPool	2.04 ± 0.07	1.39 ± 0.11	1.31*	OOM	OOM
	CN	1.10 ± 0.00	0.74 ± 0.00	0.36 ± 0.00	7.73 ± 0.00	5.09 ± 0.00
Topological	AA	2.07 ± 0.00	1.24 ± 0.00	0.45 ± 0.00	9.67 ± 0.00	6.52 ± 0.00
Heuristics	RA	2.02 ± 0.00	1.19 ± 0.00	0.33 ± 0.00	10.77 ± 0.00	7.71 ± 0.00
Treatisties	AC	2.43 ± 0.00	2.65 ± 0.00	2.50 ± 0.00	16.63 ± 0.00	11.64 ± 0.00
	MLP	0.30 ± 0.05	0.44 ± 0.09	0.14 ± 0.06	1.01 ± 0.26	0.41 ± 0.23
Attributes + Topology	Cos	0.42 ± 0.00	1.89 ± 0.00	0.07 ± 0.00	0.11 ± 0.00	0.07 ± 0.00
	MLP + AC	3.24 ± 0.03	1.95 ± 0.05	2.61 ± 0.06	15.99 ± 0.21	11.25 ± 0.13
	Cos + AC	3.60 ± 0.00	4.46 ± 0.00	0.51 ± 0.00	10.01 ± 0.00	5.20 ± 0.00
	MLP+Cos+AC	3.39 ± 0.06	4.15 ± 0.14	0.55 ± 0.03	10.88 ± 0.09	5.75 ± 0.11

Run only once as each run takes \sim 100 hrs; *** Each run takes $>$ 1000 hrs; OOM: Out Of Memory.						
		Cora	CITESEER	PubMed	Рното	Computers
	GAE	0.27 ± 0.02	0.66 ± 0.11	0.26 ± 0.03	0.28 ± 0.02	0.30 ± 0.02
	SEAL	1.89 ± 0.74	0.91 ± 0.66	***	10.49 ± 0.86	6.84 [*]
	HGCN	0.82 ± 0.03	0.74 ± 0.10	0.35 ± 0.01	2.11 ± 0.10	2.30 ± 0.14
	LGCN	1.14 ± 0.04	0.86 ± 0.09	0.44 ± 0.01	3.53 ± 0.05	1.96 ± 0.03
GNN	TLC-GNN	0.29 ± 0.09	0.35 ± 0.18	OOM	1.77 ± 0.11	OOM
	Neo-GNN	2.05 ± 0.61	1.61 ± 0.36	1.21 ± 0.14	10.83 ± 1.53	6.75 [*]
	NBFNet	1.36 ± 0.17	0.77 ± 0.22	***	11.99 ± 1.60	***
	BScNets	0.32 ± 0.08	0.20 ± 0.06	0.22 ± 0.08	2.47 ± 0.18	1.45 ± 0.10
	WalkPool	2.04 ± 0.07	1.39 ± 0.11	1.31*	ООМ	OOM
	CN	1.10 ± 0.00	0.74 ± 0.00	0.36 ± 0.00	7.73 ± 0.00	5.09 ± 0.00
Topological	AA	2.07 ± 0.00	1.24 ± 0.00	0.45 ± 0.00	9.67 ± 0.00	6.52 ± 0.00
Heuristics	RA	2.02 ± 0.00	1.19 ± 0.00	0.33 ± 0.00	10.77 ± 0.00	7.71 ± 0.00
rieuristics	AC	2.43 ± 0.00	2.65 ± 0.00	2.50 ± 0.00	16.63 ± 0.00	11.64 ± 0.00
	MLP	0.30 ± 0.05	0.44 ± 0.09	0.14 ± 0.06	1.01 ± 0.26	0.41 ± 0.23
	Cos	0.42 ± 0.00	1.89 ± 0.00	0.07 ± 0.00	0.11 ± 0.00	0.07 ± 0.00
Attributes $+$	MLP+AC	3.24 ± 0.03	1.95 ± 0.05	2.61 ± 0.06	15.99 ± 0.21	11.25 ± 0.13
Topology	Cos+AC	3.60 ± 0.00	4.46 ± 0.00	0.51 ± 0.00	10.01 ± 0.00	5.20 ± 0.00
	MLP + Cos + AC	3.39 ± 0.06	4.15 ± 0.14	0.55 ± 0.03	10.88 ± 0.09	5.75 ± 0.11
Gelato 3.		3.90 ± 0.03	4.55 ± 0.02	2.88 ± 0.09	25.68 ± 0.53	18.77 ± 0.19

Section summary:

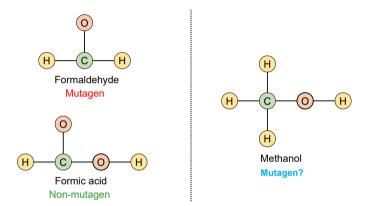
- ▶ We investigated the problem of representation learning for effective link prediction in scale-free, signed, and attributed networks.
- We scrutinized popular representation learning paradigms (node embedding and GNNs) and proposed novel solutions leveraging random-walk dynamics, social theories, and graph learning.
- Our methods enable state-of-the-art link prediction performance as verified in various real-world datasets.

Outline

1. Introduction

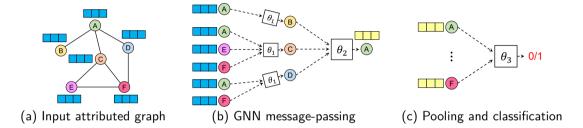
- 2. Graph representation learning for link prediction
- 3. Graph representation learning for graph classification
- 4. Graph representation learning for tasks on multiscale graphs
- 5. Conclusion and future work

Graph classification



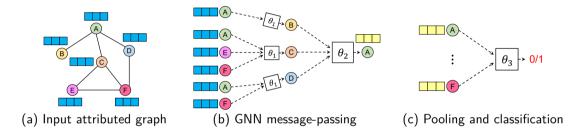
Graph classification: Given a collection of graphs, predict the label of each unknown graph based on known graphs and labels.

Graph neural networks for graph classification



► GNNs achieve state-of-the-art performance in graph classification.

Graph neural networks for graph classification



► GNNs achieve state-of-the-art performance in graph classification.

How can we understand the prediction made by GNNs in high-stakes decision making?

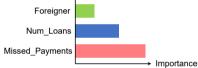
Deep predictive model

```
{Foreigner=True, Num_Loans=1, Missed_Payments=2} \Rightarrow Denied
```

Deep predictive model

► Feature importance [24, 25]

```
{Foreigner=True, Num_Loans=1, Missed_Payments=2} \Rightarrow Denied
```

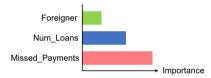


Deep predictive model

► Feature importance [24, 25]

► Local counterfactual [26, 27]

```
{Foreigner=True, Num_Loans=1, Missed_Payments=2} ⇒ Denied
```



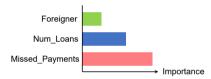
{Foreigner=True, Num_Loans=1, Missed_Payments=1} \Rightarrow Approved

Deep predictive model

► Feature importance [24, 25]

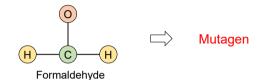
- Local counterfactual [26, 27]
- Global counterfactual [28]

```
{Foreigner=True, Num_Loans=1, Missed Payments=2} ⇒ Denied
```



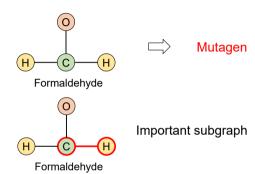
{Foreigner=True, Num_Loans=1, Missed_Payments=1}
$$\Rightarrow$$
 Approved

► Graph classification GNN



► Graph classification GNN

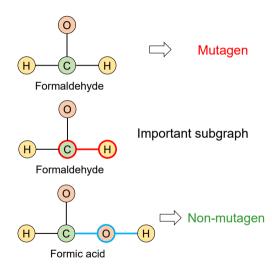
Subgraph importance [29, 30]



► Graph classification GNN

► Subgraph importance [29, 30]

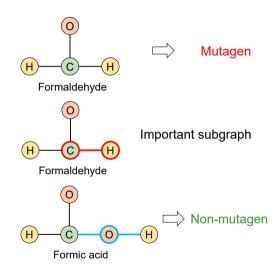
► Local counterfactual [31, 32]



► Graph classification GNN

► Subgraph importance [29, 30]

► Local counterfactual [31, 32]



Can we generate global counterfactual explanation for GNNs?

33 / 49

First global graph counterfactual explainer for GNNs⁴

⁴Huang*, Kosan*, et al. Global counterfactual explainer for graph neural networks. WSDM'23.

33 / 49

First global graph counterfactual explainer for GNNs⁴

- ▶ Global recourse: For any undesired graph $G \in \mathcal{G}$ (**GNN**(G) = 0), the explanation r should provide a recourse: **GNN**(r(G)) = 1.
- ightharpoonup Interpretable: r should be (much) easier to understand (than **GNN**).

Zexi Huang Graph Representation Learning April 5, 2023

⁴Huang*, Kosan*, et al. Global counterfactual explainer for graph neural networks. WSDM'23.

First global graph counterfactual explainer for GNNs⁴

- ▶ Global recourse: For any undesired graph $G \in \mathcal{G}$ (GNN(G) = 0), the explanation r should provide a recourse: GNN(r(G)) = 1.
- ▶ Interpretable: r should be (much) easier to understand (than **GNN**).

Explanation based on counterfactual summary

- ightharpoonup Represent r with a summary set $\mathcal C$ of counterfactual graphs.
- ightharpoonup The recourse for G is the minimal cost (distance) summary graph:

$$r_{\mathcal{C}}(G) = \operatorname*{arg\,min\,dist}(G, C)$$

where $dist(\cdot, \cdot)$ is any distance metric between graphs (e.g., GED).

⁴Huang*, Kosan*, et al. Global counterfactual explainer for graph neural networks. WSDM'23.

Quantifying explanation quality

► Cost: minimize the overall recourse cost for all undesired graphs:

$$\mathbf{cost}(r_{\mathcal{C}}) = \sum_{G \in \mathcal{G}} \min_{C \in \mathcal{C}} \operatorname{dist}(G, C)$$

Quantifying explanation quality

► Cost: minimize the overall recourse cost for all undesired graphs:

$$\mathbf{cost}(r_{\mathcal{C}}) = \sum_{G \in \mathcal{G}} \min_{C \in \mathcal{C}} \operatorname{dist}(G, C)$$

► Coverage: maximize the number of undesired graphs that have an actionable recourse (i.e., within a cost budget B):

$$\mathbf{cover}(r_{\mathcal{C}}) = |\{G \in \mathcal{G} \mid \min_{C \in \mathcal{C}} \operatorname{dist}(G, C) \leq B\}|$$

Quantifying explanation quality

► Cost: minimize the overall recourse cost for all undesired graphs:

$$\mathbf{cost}(r_{\mathcal{C}}) = \sum_{G \in \mathcal{G}} \min_{C \in \mathcal{C}} \operatorname{dist}(G, C)$$

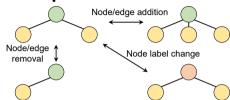
► Coverage: maximize the number of undesired graphs that have an actionable recourse (i.e., within a cost budget B):

$$\mathbf{cover}(r_{\mathcal{C}}) = |\{G \in \mathcal{G} \mid \min_{C \in \mathcal{C}} \operatorname{dist}(G, C) \leq B\}|$$

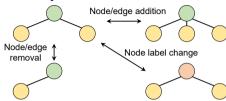
Interpretability: minimize the size of the counterfactual summary:

$$size(r_{\mathcal{C}}) = |\mathcal{C}|$$

Graph edit map: A (meta)graph of candidate graphs connected by single graph edits.



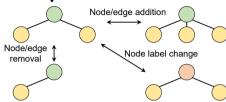
Graph edit map: A (meta)graph of candidate graphs connected by single graph edits.



Generating diverse counterfactual summary

▶ Vertex-reinforced random-walk: Converges to diverse graphs [33].

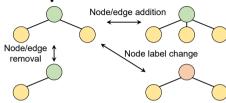
Graph edit map: A (meta)graph of candidate graphs connected by single graph edits.



Generating diverse counterfactual summary

- ▶ Vertex-reinforced random-walk: Converges to diverse graphs [33].
- ▶ Guided transitions: Biases towards good counterfactual summaries.

► Graph edit map: A (meta)graph of candidate graphs connected by single graph edits.



Generating diverse counterfactual summary

- ► Vertex-reinforced random-walk: Converges to diverse graphs [33].
- ► Guided transitions: Biases towards good counterfactual summaries.
- ▶ Random teleportation back: Manages the exponential search space.

Comparison with summary of local counterfactuals

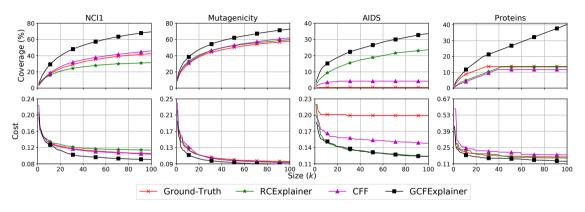


Figure: Global counterfactual quality comparison. GCFExplainer consistently outperforms the baselines with higher coverage and lower cost across different sizes.

Zexi Huang

Visualizing global counterfactuals

Figure: The global counterfactual explanation graph (third row) presents a high-level recourse rule—changing ketones and ethers into aldehydes—to combat HIV, while the edge removals in local counterfactual examples (second row) are hard to generalize.

37 / 49

37 / 49

Visualizing global counterfactuals

Figure: The global counterfactual explanation graph (third row) presents a high-level recourse rule—changing ketones and ethers into aldehydes—to combat HIV, while the edge removals in local counterfactual examples (second row) are hard to generalize.

37 / 49

Visualizing global counterfactuals

Figure: The global counterfactual explanation graph (third row) presents a high-level recourse rule—changing ketones and ethers into aldehydes—to combat HIV, while the edge removals in local counterfactual examples (second row) are hard to generalize.

Section summary:

- ▶ We formulate the novel problem of global counterfactual reasoning and explanation of GNNs for graph classification.
- We present GCFExplainer, the first global counterfactual explainer for GNNs that generates representative counterfactual summaries.
- ▶ We demonstrate the effectiveness and usefulness of GCFExplainer in providing high-level recourse for GNN-based graph classification, in the context of drug property prediction and discovery.

Outline

1. Introduction

- 2. Graph representation learning for link prediction
- 3. Graph representation learning for graph classification
- 4. Graph representation learning for tasks on multiscale graphs
- 5. Conclusion and future work

Multiscale graphs

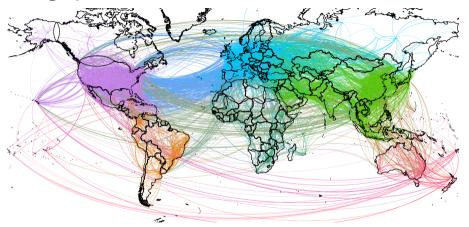


Figure: Global network of airports connected by domestic and international fights. Nodes in multiscale graphs form dense clusters at different structural scales (countries and continents here).

Graph neural diffusion networks⁵

► Multiscale message-passing as graph diffusions:

$$u^{(K)} = \sum_{k=0}^{K-1} \alpha_k M^k u^{(0)}$$

 \triangleright Existing work [34, 35] adopts fixed diffusion weights α_k .

Zexi Huang Graph Representation Learning April 5, 2023

41 / 49

⁵Ye, **Huang**, Hong, Singh. Graph convolutional networks meet neural diffusions. Under review.

Graph neural diffusion networks⁵

► Multiscale message-passing as graph diffusions:

$$u^{(K)} = \sum_{k=0}^{K-1} \alpha_k M^k u^{(0)}$$

- **Existing work** [34, 35] adopts fixed diffusion weights α_k .
- We propose to learn the diffusion weights directly from data:

$$u^{(K)} = f([u^{(0)}; Mu^{(0)}; ...; M^{K-1}u^{(0)}]; \theta)$$

April 5, 2023

41 / 49

► Key result: The learned weights are adaptable to different datasets, leading to better semi-supervised node classification performance.

⁵Ye, **Huang**, Hong, Singh. Graph convolutional networks meet neural diffusions. Under review.

Zexi Huang Graph Representation Learning April 5, 2023 42 / 49

⁶Huang, Kondapaneni, Silva, Singh. Multiscale community detection with pointwise mutual information. Ongoing.

- $\qquad \qquad R^{AC}(\tau) = \Pi P(\tau) \pi \pi^\top \text{ and } R^{PMI}(\tau) = \log(\Pi P(\tau)) \log(\pi \pi^\top)$
- ▶ Clustered similarity as a quality function: $r(C; \tau) = \sum_{i,j \in C} R_{ij}(\tau)$

Zexi Huang Graph Representation Learning April 5, 2023 42 / 49

⁶Huang, Kondapaneni, Silva, Singh. Multiscale community detection with pointwise mutual information. Ongoing.

- $\qquad \qquad R^{AC}(\tau) = \Pi P(\tau) \pi \pi^\top \text{ and } R^{PMI}(\tau) = \log(\Pi P(\tau)) \log(\pi \pi^\top)$
- ▶ Clustered similarity as a quality function: $r(C; \tau) = \sum_{i,j \in C} R_{ij}(\tau)$
- Markov Stability [22] finds the best communities $\{C_k\}$ by maximizing

$$r^{AC}(C_1, \cdots, C_c; \boldsymbol{\tau}) = \sum_{k=1}^{c} \sum_{i,j \in C_k} R_{ij}^{AC}(\boldsymbol{\tau})$$

which assumes a fixed scale for each community specified by the user.

Zexi Huang Graph Representation Learning April 5, 2023 42/49

⁶Huang, Kondapaneni, Silva, Singh. Multiscale community detection with pointwise mutual information. Ongoing.

- ► Clustered similarity as a quality function: $r(C; \tau) = \sum_{i,j \in C} R_{ij}(\tau)$
- Markov Stability [22] finds the best communities $\{C_k\}$ by maximizing

$$r^{AC}(C_1, \cdots, C_c; \boldsymbol{\tau}) = \sum_{k=1}^{c} \sum_{i,j \in C_k} R_{ij}^{AC}(\boldsymbol{\tau})$$

which assumes a fixed scale for each community specified by the user.

▶ We find $\{C_k\}$ along with their natural scales $\{\tau_k\}$ based on PMI:

$$r^{PMI}(C_1, \cdots, C_c; \tau_1, \cdots, \tau_c) = \sum_{k=1}^{c} \sum_{i, j \in C_k} R_{ij}^{PMI}(\tau_k)$$

Zexi Huang Graph Representation Learning April 5, 2023 42 / 49

⁶Huang, Kondapaneni, Silva, Singh. Multiscale community detection with pointwise mutual information. Ongoing.

Empirical observation

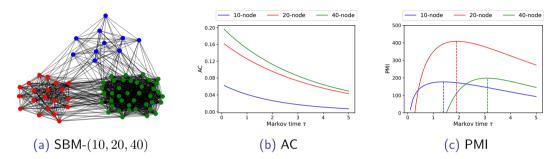


Figure: Quality functions based on PMI for communities of different sizes reach unique peaks at different τ , revealing their natural scales, while those based on AC cannot.

Empirical observation

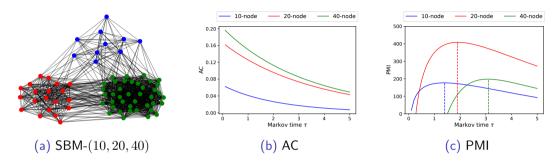


Figure: Quality functions based on PMI for communities of different sizes reach unique peaks at different τ , revealing their natural scales, while those based on AC cannot.

Theoretical analysis

- ▶ We have shown that $r^{AC}(C;\tau)$ monotonously decreases with τ .
- For $r^{PMI}(C;\tau)$, monotonicity has only been proved for some cases.

Multiscale anomaly detection⁷

Existing work focuses on **node-level** anomaly within a particular context [36, 37, 38, 39] or multiscale contexts [40, 41].

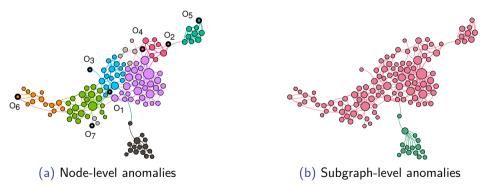


Figure: Real-world graphs have anomalies of different scales. Figures from [40].

⁷Arriola, Kosan, **Huang**, Singh. Multiscale anomaly detection with graph autoencoders. Ongoing.

Spectral energy distribution patterns for anomalies

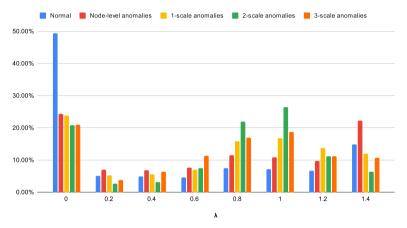


Figure: Compared to normal nodes, the spectral energy distributions of anomalous elements concentrate more on the high-frequency regions. Further, the smaller the scale of the anomalies, the higher the frequency bands they dominate.

45 / 49

Spectral localized Beta Wavelet GNNs

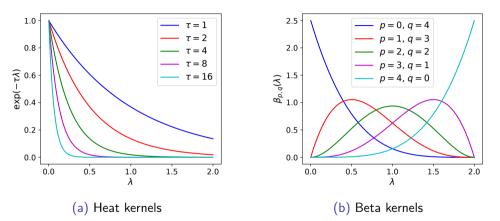


Figure: Spectral property comparison between heat kernels and Beta kernels. Beta kernels contain different band-pass filters that facilitate multiscale anomaly detection.

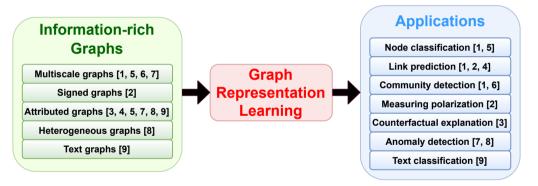
Zexi Huang

Outline

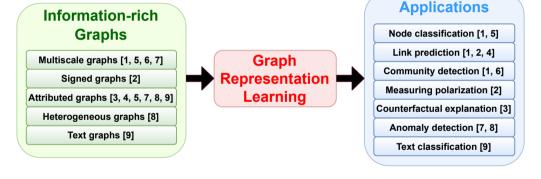
1. Introduction

- 2. Graph representation learning for link prediction
- 3. Graph representation learning for graph classification
- 4. Graph representation learning for tasks on multiscale graphs
- 5. Conclusion and future work

This dissertation demonstrates the importance of accounting for the interplay between the rich graph information and downstream task properties in graph representation learning.



This dissertation demonstrates the importance of accounting for the interplay between the rich graph information and downstream task properties in graph representation learning.



- ► Can we develop a universal architecture for different graphs & tasks?
- ► Can we understand/explain the model in the embedding space?

Zexi Huang

Acknowledgements

Advisor: Ambuj Singh

PhD Committee: Yu-Xiang Wang, Xifeng Yan

Collaborators: Arlei Silva, Mert Kosan, Sourav Medya, Sayan Ranu,

Wei Ye, Manu Kondapaneni, Marianne Arriola, Saurabh Sharma

Labmates: Rachel, Richika, Chandana, Ashwini, Haraldur, Omid, Sean, Hongyuan, Furkan, Yuning, Sikun, Nikunj, Christos, Rasta, Kha-Dinh

Amazon colleagues: Kannan, Han, Alfredo, Eric, Dushyanta, Vel, ...

Roomates: Liang, Yuke, Youfu, Lianke

My family: I miss them and this dissertation is dedicated to them.

Learning Representations for Information-rich Graphs

PhD Defense

Zexi Huang

Committee: Ambuj Singh (Chair), Yu-Xiang Wang, Xifeng Yan Department of Computer Science, University of California, Santa Barbara

April 5, 2023

Reference I

- Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric transitivity preserving graph embedding. In SIGKDD, 2016.
- [2] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In SIGKDD, 2016.
- [3] Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Xuanrong Yao, and Wenwu Zhu. Arbitrary-order proximity preserved network embedding. In SIGKDD, 2018.
- [4] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In SIGKDD, 2016.
- [5] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh, and Sungchul Kim. Continuous-time dynamic network embeddings. In WebConf, 2018.

Reference II

- [6] Amin Javari, Tyler Derr, Pouya Esmailian, Jiliang Tang, and Kevin Chen-Chuan Chang. Rose: Role-based signed network embedding. In WebConf, 2020.
- Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi.
 Benchmark graphs for testing community detection algorithms.
 Physical review E, 78(4):046110, 2008.
- Zexi Huang, Arlei Silva, and Ambuj Singh.
 A broader picture of random-walk based graph embedding. In SIGKDD, 2021.
- [9] Michael T Schaub, Jean-Charles Delvenne, Renaud Lambiotte, and Mauricio Barahona. Multiscale dynamical embeddings of complex networks. Physical Review E, 99(6):062308, 2019.
- [10] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In ICLR, 2017.

Reference III

- [11] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.
- [12] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In ICLR, 2018.
- [13] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308, 2016.
- [14] Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In NeurIPS, 2018.
- [15] Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional neural networks. In NeurIPS, 2019.

Reference IV

- [16] Yiding Zhang, Xiao Wang, Chuan Shi, Nian Liu, and Guojie Song. Lorentzian graph convolutional networks. In WebConf. 2021.
- Lei Cai, Jundong Li, Jie Wang, and Shuiwang Ji. Line graph neural networks for link prediction. IEEE TPAMI. 2021.
- Zuovu Yan, Tengfei Ma, Liangcai Gao, Zhi Tang, and Chao Chen. Link prediction with persistent homology: An interactive view. In ICML, 2021.
- Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford networks: A general graph neural network framework for link prediction. In NeurIPS, 2021.
- Yuzhou Chen, Yulia R Gel, and H Vincent Poor. [20] Bscnets: Block simplicial complex neural networks. In AAAI, 2022.

Reference V

- [21] Liming Pan, Cheng Shi, and Ivan Dokmanić. Neural link prediction with walk pooling. In ICLR, 2022.
- [22] J-C Delvenne, Sophia N Yaliraki, and Mauricio Barahona. Stability of graph communities across time scales. PNAS, 107(29):12755–12760, 2010.
- [23] Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. NeurIPS, 2016.
- [24] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should i trust you?" explaining the predictions of any classifier. In SIGKDD, 2016.
- [25] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In NeurIPS, 2017.

Reference VI

- [26] Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations without opening the black box: Automated decisions and the gdpr. Harvard Journal of Law & Technology, 31(2), 2018.
- [27] Berk Ustun, Alexander Spangher, and Yang Liu. Actionable recourse in linear classification. In FAT. 2019.
- [28] Kaivalya Rawal and Himabindu Lakkaraju. Beyond individualized recourse: Interpretable and interactive summaries of actionable recourses. In NeurIPS, 2020.
- [29] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer: Generating explanations for graph neural networks. In NeurIPS, 2019.
- [30] Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang. Parameterized explainer for graph neural network. In NeurIPS, 2020.

Reference VII

- [31] Mohit Bajaj, Lingyang Chu, Zi Yu Xue, Jian Pei, Lanjun Wang, Peter Cho-Ho Lam, and Yong Zhang. Robust counterfactual explanations on graph neural networks. In NeurIPS, 2021.
- [32] Ana Lucic, Maartje A Ter Hoeve, Gabriele Tolomei, Maarten De Rijke, and Fabrizio Silvestri. Cf-gnnexplainer: Counterfactual explanations for graph neural networks. In AISTATS, 2022.
- [33] Qiaozhu Mei, Jian Guo, and Dragomir Radev. Divrank: the interplay of prestige and diversity in information networks. In SIGKDD, 2010.
- [34] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph neural networks meet personalized pagerank. In ICLR, 2018.
- [35] Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph learning. In NeurIPS, 2019.

Reference VIII

- [36] Ninghao Liu, Xiao Huang, and Xia Hu. Accelerated local anomaly detection via resolving attributed networks. In *IJCAI*, 2017.
- [37] Kaize Ding, Jundong Li, and Huan Liu. Interactive anomaly detection on attributed networks. In WSDM, 2019.
- [38] Zhiming Xu, Xiao Huang, Yue Zhao, Yushun Dong, and Jundong Li. Contrastive attributed network anomaly detection with data augmentation. In PAKDD, 2022.
- [39] Jianheng Tang, Jiajin Li, Zi-Chao Gao, and Jia Li. Rethinking graph neural networks for anomaly detection. In ICLR, 2022.
- [40] Leonardo Gutiérrez-Gómez, Alexandre Bovet, and Jean-Charles Delvenne. Multi-scale anomaly detection on attributed networks. In AAAI, 2020.

Reference IX

[41] Xuexiong Luo, Jia Wu, Amin Beheshti, Jian Yang, Xiankun Zhang, Yuan Wang, and Shan Xue. Comga: Community-aware attributed graph anomaly detection. In WSDM, 2022.