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Supervised Setting

Presented by Rachel Redberg
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Supervised Learning

Given a set of labeled training examples (Z:,¥:), learn a
function f mapping input to output:

f(z;) ~ v

Classification:
Regression:
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Oftentimes, learning a model in the supervised setting involves minimizing a
loss function L(y,¥J) which penalizes prediction error:

Mean Squared Error (MSE): Log
loss: 1 N . \9
~ 2ic1 (Ui — Ui) — (ylog(p) + (1 — y) log(1 — p))
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Linear Regression (Least Squares)

" Prediction:

: yi = f(z;) =z} B+ B
Tl Learning:

] B = argmin, Y., (4 — o b)

o-h

= argmin, (y — Xb)" (y — Xb)



Linear Regression (Least Squares)

Closed form solution:

B=(X"X)"'X"y

For f(B) = (yﬂ— XB)'(y—XB)  0f/0B=0
, set .

and solve for



Logistic Regression

Models the probability of a binary independent variable as a function of multiple
independent variables:

P(Y — 1|X — ','E) — 1+660+;81w1+...+6na:n — O-(wTIB + IBO)

/ﬁ 2, BER", Y €{0,1}, o(a) = 1%




Logistic Regression

How to solve for beta? Define a likelihood function and maximize it with gradient
descent. Assuming observations are independent, the likelihood is given by
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Support Vector Machines (SVM)

Given a set of linearly separable training data, how to compute a decision
boundary? Which is the best separator/hyperplane?
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Widest Margin Approach (SVM)




Decision Rule:
fwix +b=1ther @

FwTx + b < -1 then O

w'x is the projection of x onto w,
b is the bias.

Points on the margin
(WTx + b = £1) are called /
support vectors.




Maximize the margin

SVM :
: 2
min %HwH

s.t. y;(whz; +b) > 1 Vi




What if the data isn’t linearly separable?
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Slack variables

Soft-margin SVM :

min%||w||2 +C> . &

sty (wha; +0) > 1
& >0




Kernel Trick
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Apply a transformation ¢ :
K(z;,z;) = ¢(x;)¢p(z;) is a kernel function



Primal form of SVM:

min—||WH2

st. yilwx; +b) >1

Dual form of SVM:

maxZa, — —ZZ& QjYiYiXi-Xj
i
st. Za;y;zo
I

a; >0



We can apply a transformation ¢

maxZa, Zoé Oéjyl)/ﬁb( ) ¢( )
St. Z Ay = 0

OH Z 0
Examples of kernels:
K(X,’, Xj) = (X,'.Xj -+ 1)”

I —x ]
K(X,‘,Xj) =€ o



Deep Learning (Feedforward Neural Network)

Hidden
Input e

Output
layer

[nputs
Outputs



A closer look...
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Activation Functions Derivatives

Sigmoid

[ @ - o)
tanh ‘

tzrr‘lh(:c) I 1— 0'(28)2

ReLU 1 /

max (0, z) Oif x < O, lifx >0



Backpropagation (Computational Graphs)
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Compute Loss
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Compute Derivatives
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X

x 1s the 1nput,

w 1s the weight,

b is the bias,

y 1s the predicted output, and

t 1s the true value



Computing the derivatives:

Computing the loss: dl
B d€ dL
Yy = i(z) dz dy g (Z)
L=y —1y oL _dL
ow dz
oL dL

ob dz



Gradient Descent

. _ _ 9
Update rule:  w; " = w; U J(w)
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Convolutional Neural Network

Input Convolutional ~ Pooling  Fully Connected Output
Layer Layer Layer Layer Layer
— I




Convolutional neural networks

e Often used for image processing tasks.
Inspired by biological processes in the visual cortex.

e Exploit statistical patterns in the data:

o Shared weights
o Translation invariance

e Network learns filters which extract a particular pattern (e.g. edges, textures)
from the image.
e Hierarchical structure: complex patterns are built out of simpler ones.



CNN Layers

Convolutional Layer:
Convolutional kernels are matrices of a given size (e.g., 3 x 3) which are
“convolved” with the image to extract features.

(Max) Pooling Layer:

Pooling layers reduce the dimensionality of the previous layer’s output
(“downsample”) by combining the output of non-overlapping sub-regions of the
original representation.

Fully Connected Layer:

Typically need to “flatten” the matrix and feed it into a fully-connected layer to
aggregate output from the convolutional/pooling layers, for the final classification.



Convolutional Layer
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Max Pooling Layer
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Flatten Matrix
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Recurrent Neural Networks
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Recurrent Neural Networks

e Networks with loops to “remember” information from a previous time step.

e Useful for tasks that involve sequences of data:
o Language models (character-level, word-level), translation, speech recognition, speech-to-text,
handwritten character generation, time series forecasting, etc.
e Previous information might be helpful for the present task:
o E.g., invideo captioning, use information from previous video frames to make a prediction
related to the current frame.
e |ssues with vanishing/exploding gradient:

o Long short-term memory (LSTM) architecture introduces “forget” gates to learn long-term
dependencies; decide which values to forget and which to update.
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