

Transfer Learning for Community Detection

Zexi Huang

Supervisor: Asst. Prof. Sinno Jialin Pan

Yingcai Honors College, University of Electronic Science and Technology of China
Computational Intelligence Lab, Nanyang Technological University

June 6, 2018

Outline

1 Introduction

- Background
- Contribution

2 Framework

3 Algorithm

- Learning Representations
- Clustering Representations

4 Experiments

- Settings
- Results

5 Conclusion

Background

- Community detection:
 - Objective: to find densely connected components in networks that in reality represent cohesive communities [1].
 - Applications: setting up efficient and effective recommendation systems [2], handling navigation queries [3], establishing dedicated mirror server [4], etc.
- Community detection in multiplex networks:
 - Multiplex network: the same set of nodes are connected by multiple types of edges [5]. Also known as multilayer network [6] or multidimensional network [7].
 - Objectives: to find a community partition for all layers [8, 9, 10] or a subset of layers [11].

Contribution

- First to formulate the multiplex community detection problem as to refine community detection results in some layer with transferred knowledge from other layers.
- Design a representation-based multiplex community detection framework, and implement it with an extended symmetric non-negative matrix factorization approach for learning representations and k-means for clustering representations.
- Our algorithm outperforms the other representation-based community detection algorithms, especially when the target layer that receives transferred knowledge is noisy (e.g. much sparser than other layers).

Framework

Problem

Given a N -layer multiplex network $G(V, E_1, \dots, E_N)$ with adjacency matrices $\mathbf{A}_1, \dots, \mathbf{A}_N$, find distinct community partition in some layer K' , $\mathbf{C}_{K'}$, so that both transferred knowledge from other layers and layer-specific features of K' th layer are exploited.

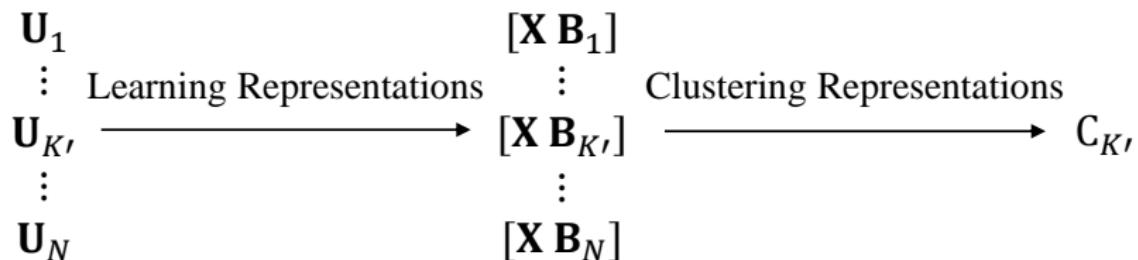


Figure 1: The overview of our framework.

Learning Representations

Stochastic Block Model [12]

Utility matrix:

$$\mathbf{U} = \mathbf{A} \quad (1)$$

Learning objective:

$$\min_{\mathbf{H} \geq 0} L = \|\mathbf{A} - \mathbf{H}\mathbf{H}^T\|_F^2 \quad (2)$$

Objective

$$\begin{aligned} \min_{\mathbf{X} \geq 0, \mathbf{B}_1, \dots, \mathbf{B}_N \geq 0} L &= \sum_{K=1}^N \|\mathbf{A}_K - [\mathbf{X} \ \mathbf{B}_K][\mathbf{X} \ \mathbf{B}_K]^T\|_F^2 \\ &= \sum_{K=1}^N \|\mathbf{A}_K - \mathbf{X}\mathbf{X}^T - \mathbf{B}_K\mathbf{B}_K^T\|_F^2 \end{aligned} \quad (3)$$

Learning Representations

Theorem 1

The sum of reconstruction error, L , can't be minimized to zero.

Proof

We only need to prove that $\|\mathbf{A}_K - \mathbf{XX}^T - \mathbf{B}_K \mathbf{B}_K^T\|_F^2 > 0$, which is equivalent to $\mathbf{A}_K \neq \mathbf{XX}^T + \mathbf{B}_K$. We prove this by showing that $\mathbf{XX}^T + \mathbf{B}_K \mathbf{B}_K^T$ is positive semi-definite and that \mathbf{A}_K is not. First, for any non-zero vector $s \in \mathbb{R}^{n \times 1}$, we have

$$\begin{aligned} s^T (\mathbf{XX}^T + \mathbf{B}_K \mathbf{B}_K^T) s &= s^T \mathbf{XX}^T s + s^T \mathbf{B}_K \mathbf{B}_K^T s \\ &= g^T g + h^T h \\ &= \|g\|^2 + \|h\|^2 \geq 0 \end{aligned} \tag{4}$$

where $g = \mathbf{X}^T s$, $h = \mathbf{B}_K^T s$. This shows that $\mathbf{XX}^T + \mathbf{B}_K \mathbf{B}_K^T$ is positive semi-definite.

Learning Representations

Proof (cont'd)

Then, for undirected networks with no self-loops, we have \mathbf{A}_K to be symmetric and

$$\sum_{i=1}^n \lambda_i = \text{Tr}(\mathbf{A}_K) = \sum_{i=1}^n \mathbf{A}_{Kii} = 0 \quad (5)$$

where $\lambda_1, \dots, \lambda_n$ are the n eigenvalues of \mathbf{A}_K . Therefore, either there is at least some $\lambda_i < 0$ or $\lambda_1 = \dots = \lambda_n = 0$. However, since \mathbf{A}_K is symmetric, $\lambda_1 = \dots = \lambda_n = 0$ directly leads to $\mathbf{A}_K = 0$. Thus, $\lambda_i < 0$ holds, which means \mathbf{A}_K can't be positive semi-definite.

Learning Representations

Objective

$$\min_{\mathbf{X} \geq 0, \mathbf{B}_1, \dots, \mathbf{B}_N \geq 0} L = \sum_{K=1}^N \|\mathbf{A}_K - \mathbf{X}\mathbf{X}^T - \mathbf{B}_K \mathbf{B}_K^T\|_F^2 \quad (6)$$

Karush-Kuhn-Tucker Conditions

Introduce the multipliers $\boldsymbol{\Lambda}, \boldsymbol{\Gamma}_K$ and the Lagrangian

$$\mathcal{L}(\mathbf{X}, \mathbf{B}_K) = L - \text{Tr}(\boldsymbol{\Lambda} \mathbf{X}^T) - \sum_{K=1}^N \text{Tr}(\boldsymbol{\Gamma}_K \mathbf{B}_K^T) \quad (7)$$

From the stationarity of Karush-Kuhn-Tucker conditions we have

$$\frac{\partial \mathcal{L}}{\partial \mathbf{X}} = \frac{\partial L}{\partial \mathbf{X}} - \boldsymbol{\Lambda} = 0, \quad \frac{\partial \mathcal{L}}{\partial \mathbf{B}_K} = \frac{\partial L}{\partial \mathbf{B}_K} - \boldsymbol{\Gamma}_K = 0 \quad (8)$$

Learning Representations

Karush-Kuhn-Tucker Conditions (cont'd)

which leads to

$$\boldsymbol{\Lambda} = 4N\mathbf{X}\mathbf{X}^T\mathbf{X} + 4 \sum_{K=1}^N (\mathbf{B}_K\mathbf{B}_K^T - \mathbf{A}_K)\mathbf{X} \quad (9)$$

$$\boldsymbol{\Gamma}_K = 4\mathbf{B}_K\mathbf{B}_K^T\mathbf{B}_K + 4(\mathbf{X}\mathbf{X}^T - \mathbf{A}_K)\mathbf{B}_K \quad (10)$$

Then, from the complementary slackness of Karush-Kuhn-Tucker conditions

$$\boldsymbol{\Lambda}_{ij}\mathbf{X}_{ij} = 0, \boldsymbol{\Gamma}_{Kij}\mathbf{B}_{Kij} = 0 \quad (11)$$

Substituting Eq.9 and Eq.10 into Eq.11, we have

Learning Representations

Karush-Kuhn-Tucker Conditions (cont'd)

$$\left(- \sum_{K=1}^N (\mathbf{A}_K - \mathbf{B}_K \mathbf{B}_K^T) \mathbf{X} + N \mathbf{X} \mathbf{X}^T \mathbf{X} \right)_{ij} \mathbf{X}_{ij} = 0 \quad (12)$$

$$\left(-(\mathbf{A}_K - \mathbf{X} \mathbf{X}^T) \mathbf{B}_K + \mathbf{B}_K \mathbf{B}_K^T \mathbf{B}_K \right)_{ij} \mathbf{B}_{Kij} = 0 \quad (13)$$

Alternating Multiplicative Update Rules

$$\mathbf{X}_{ij} \leftarrow \mathbf{X}_{ij} \sqrt{\frac{\left(\left(\sum_{K=1}^N (\mathbf{A}_K - \mathbf{B}_K \mathbf{B}_K^T) \right)^+ \mathbf{X} \right)_{ij}}{\left(\left(\sum_{K=1}^N (\mathbf{A}_K - \mathbf{B}_K \mathbf{B}_K^T) \right)^- \mathbf{X} \right)_{ij} + (N \mathbf{X} \mathbf{X}^T \mathbf{X})_{ij}}} \quad (14)$$

$$\mathbf{B}_{Kij} \leftarrow \mathbf{B}_{Kij} \sqrt{\frac{\left((\mathbf{A}_K - \mathbf{X} \mathbf{X}^T)^+ \mathbf{B}_K \right)_{ij}}{\left((\mathbf{A}_K - \mathbf{X} \mathbf{X}^T)^- \mathbf{B}_K \right)_{ij} + (\mathbf{B}_K \mathbf{B}_K^T \mathbf{B}_K)_{ij}}} \quad (15)$$

Learning Representations

Theorem 2

The limiting solutions of the update rules in Eq.14 and Eq.15 satisfy Karush-Kuhn-Tucker conditions in Eq.12 and Eq.13.

Proof

We only need to prove that Eq.14 satisfies Eq.12 at convergence. At convergence, we have $\mathbf{X}^\infty = \mathbf{X}^{t+1} = \mathbf{X}^t = \mathbf{X}$. Then, from Eq.14

$$\mathbf{X}_{ij} = \mathbf{X}_{ij} \sqrt{\frac{((\sum_{K=1}^N (\mathbf{A}_K - \mathbf{B}_K \mathbf{B}_K^T))^+ \mathbf{X})_{ij}}{((\sum_{K=1}^N (\mathbf{A}_K - \mathbf{B}_K \mathbf{B}_K^T))^- \mathbf{X})_{ij} + (N \mathbf{X} \mathbf{X}^T \mathbf{X})_{ij}}} \quad (16)$$

Square both sides, multiply it by the denominator, and transpose it, we get

$$(((\sum_{K=1}^N (\mathbf{A}_K - \mathbf{B}_K \mathbf{B}_K^T))^- - (\sum_{K=1}^N (\mathbf{A}_K - \mathbf{B}_K \mathbf{B}_K^T))^+) \mathbf{X} + N \mathbf{X} \mathbf{X}^T \mathbf{X})_{ij} \mathbf{X}_{ij}^2 = 0 \quad (17)$$

Learning Representations

Proof (cont'd)

Note that

$$\left(\sum_{K=1}^N (\mathbf{A}_K - \mathbf{B}_K \mathbf{B}_K^T) \right)^+ - \left(\sum_{K=1}^N (\mathbf{A}_K - \mathbf{B}_K \mathbf{B}_K^T) \right)^- = \sum_{K=1}^N (\mathbf{A}_K - \mathbf{B}_K \mathbf{B}_K^T) \quad (18)$$

Therefore, Eq.17 reduces to

$$\left(- \sum_{K=1}^N (\mathbf{A}_K - \mathbf{B}_K \mathbf{B}_K^T) \mathbf{X} + N \mathbf{X} \mathbf{X}^T \mathbf{X} \right)_{ij} \mathbf{X}_{ij}^2 = 0 \quad (19)$$

Eq.19 is equivalent to Eq.12, the respective Karush-Kuhn-Tucker condition, since both require either the first term $(-\sum_{K=1}^N (\mathbf{A}_K - \mathbf{B}_K \mathbf{B}_K^T) \mathbf{X} + N \mathbf{X} \mathbf{X}^T \mathbf{X})_{ij}$ to be zero or the second terms \mathbf{X}_{ij} , \mathbf{X}_{ij}^2 to be zero.

Learning Representations

Algorithm 1 *learn_representation*($\mathbf{A}_1, \dots, \mathbf{A}_N$)

Input: Adjacency matrices of a N -layers multiplex network $\mathbf{A}_1, \dots, \mathbf{A}_N$

Output: A common feature matrix \mathbf{X} and layer-specific feature matrices

$\mathbf{B}_1, \dots, \mathbf{B}_N$

1: $\mathbf{X} = 0, \mathbf{B}_1, \dots, \mathbf{B}_N = 0$

2: **for** $t = 1 \rightarrow T$ **do**

3: $\mathbf{X}_{ij} \leftarrow \mathbf{X}_{ij} \sqrt{\frac{((\sum_{K=1}^N (\mathbf{A}_K - \mathbf{B}_K \mathbf{B}_K^T))^+ \mathbf{X})_{ij}}{((\sum_{K=1}^N (\mathbf{A}_K - \mathbf{B}_K \mathbf{B}_K^T))^+ \mathbf{X})_{ij} + (N \mathbf{X} \mathbf{X}^T \mathbf{X})_{ij}}}$

4: **for** $K = 1 \rightarrow N$ **do**

5: $\mathbf{B}_{Kij} \leftarrow \mathbf{B}_{Kij} \sqrt{\frac{((\mathbf{A}_K - \mathbf{X} \mathbf{X}^T)^+ \mathbf{B}_K)_{ij}}{((\mathbf{A}_K - \mathbf{X} \mathbf{X}^T)^+ \mathbf{B}_K)_{ij} + (\mathbf{B}_K \mathbf{B}_K^T \mathbf{B}_K)_{ij}}}$

6: **end for**

7: **end for**

8: **return** $\mathbf{X}, \mathbf{B}_1, \dots, \mathbf{B}_N$

Clustering Representations

Algorithm 2 *cluster_representation(\mathbf{X}, \mathbf{B}_K)*

Input: The common feature matrix \mathbf{X} and layer-specific feature matrices \mathbf{B}_K of K th layer.

Output: The community partition for K th layer.

- 1: $\mathbf{C}_K \leftarrow k\text{-means}([\mathbf{X} \ \mathbf{B}_K])$
- 2: **return** \mathbf{C}_K

Settings

- Baselines: Monoplex-CD [13], Monoplex-Newton [14].
- Datasets:
 - Multiplex social networks: AUCS [15], Seventhgrade [16] and Physician [17].
 - Multiplex biological networks: Bos [18, 19] and C elegans [20, 21].
 - Multiplex online networks: ff-tw-yt [22].
- Metric: modularity [23].
- Environment: MATLAB 9.0.0.341360 (R2016a).

Convergence Analysis

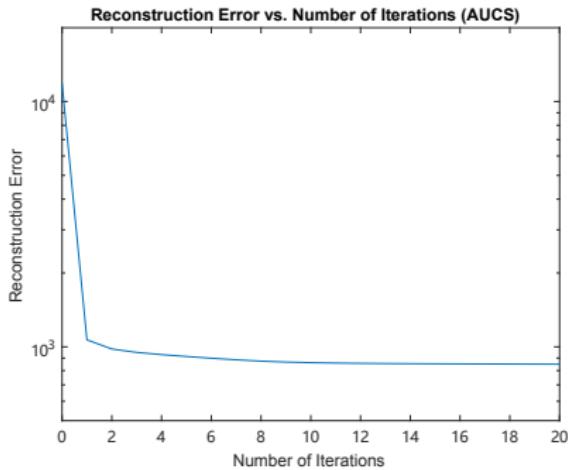


Figure 2: Reconstruction Error vs. Number of Iterations (AUCS).

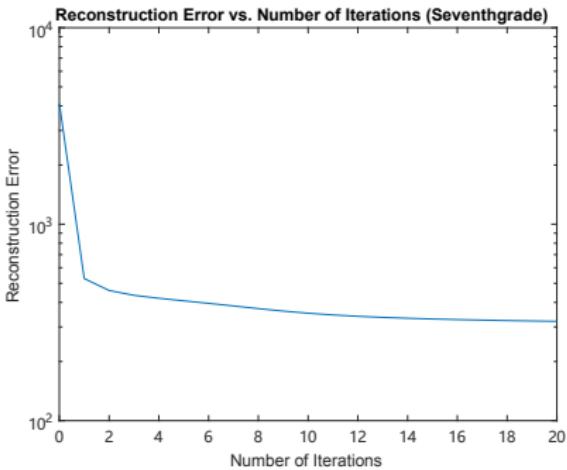


Figure 3: Reconstruction Error vs. Number of Iterations (Seventhgrade).

Convergence Analysis

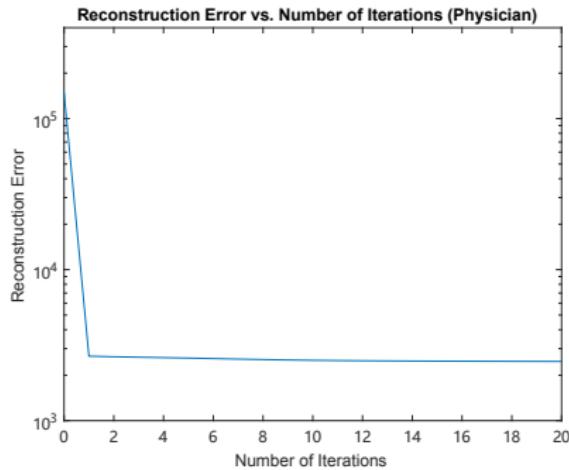


Figure 4: Reconstruction Error vs. Number of Iterations (Physician).

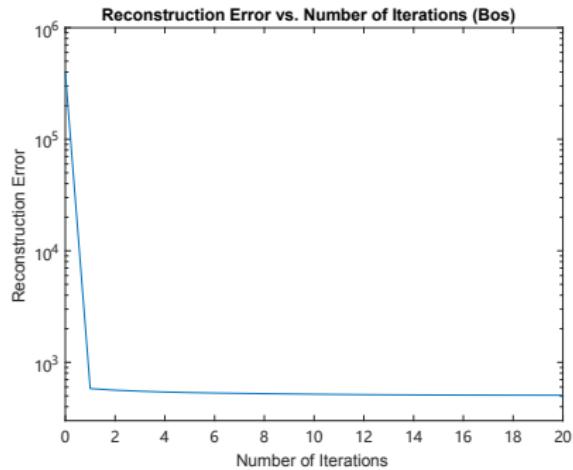


Figure 5: Reconstruction Error vs. Number of Iterations (Bos).

Convergence Analysis

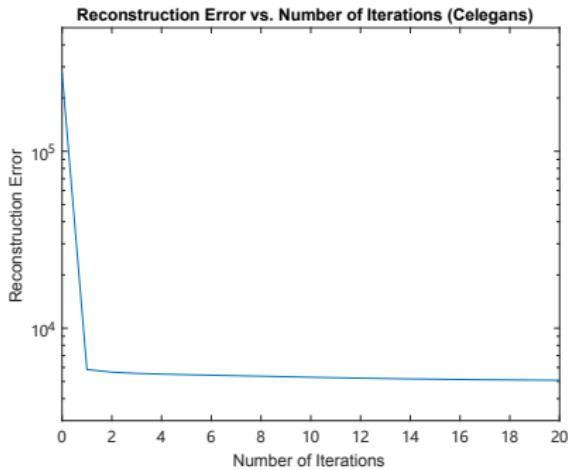


Figure 6: Reconstruction Error vs. Number of Iterations (Celegans).

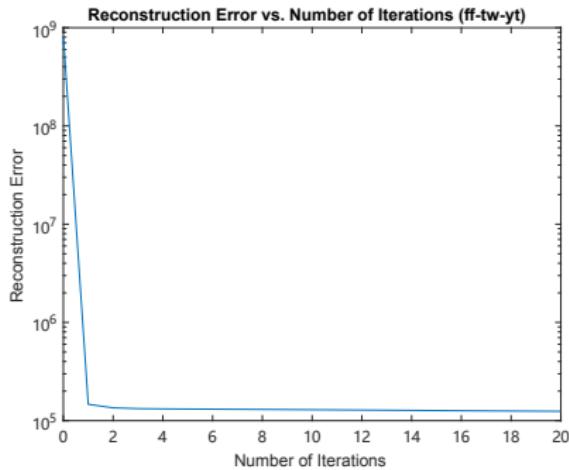


Figure 7: Reconstruction Error vs. Number of Iterations (ff-tw-yt).

Comparative Analysis

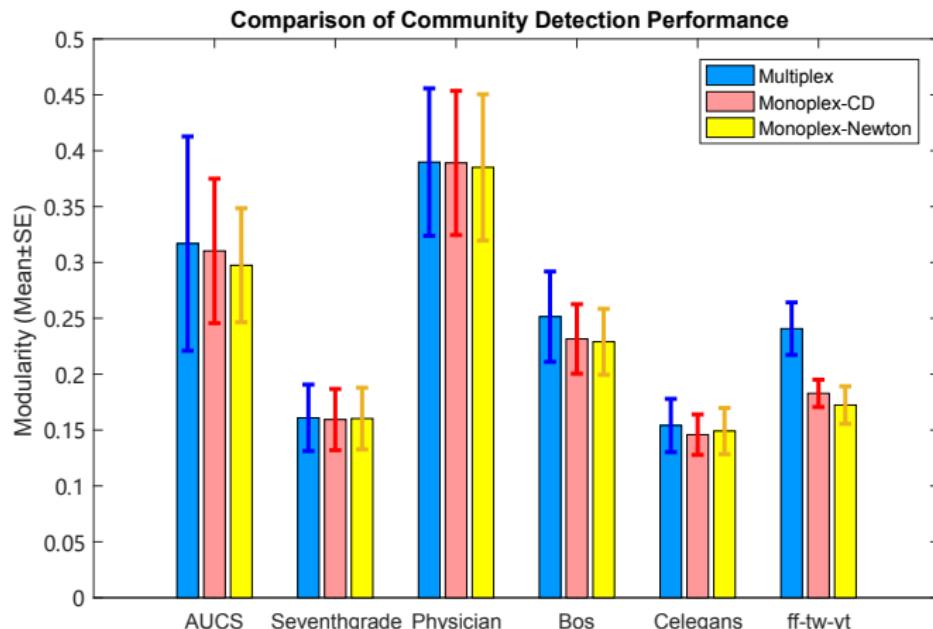


Figure 8: Comparison of community detection performance in terms of modularity. Error bars depict standard errors.

Noisy Condition Analysis

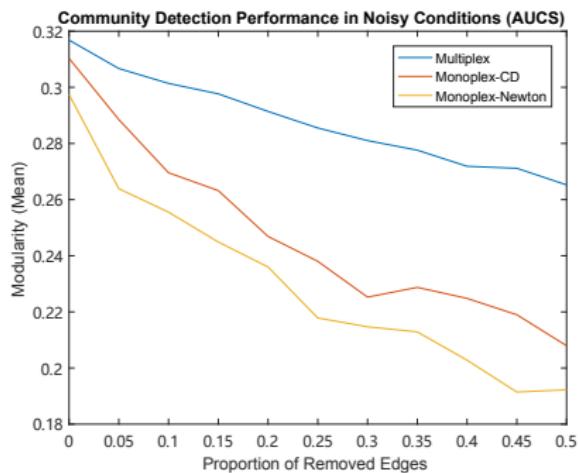


Figure 9: Community detection performance in noisy conditions (AUCS).

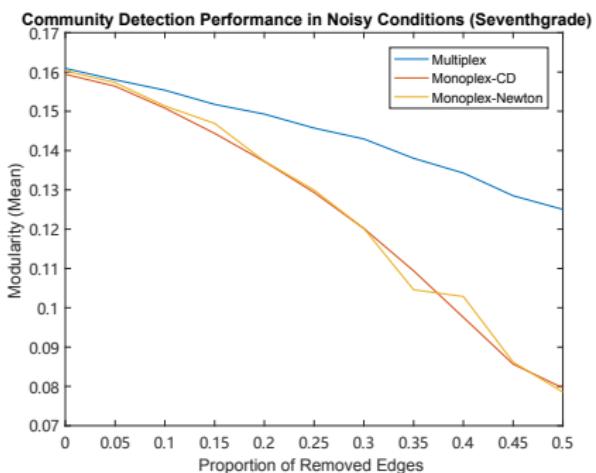


Figure 10: Community detection performance in noisy conditions (Seventhgrade).

Noisy Condition Analysis

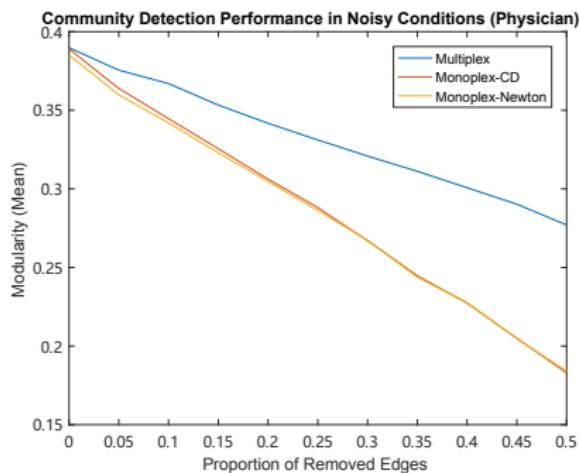


Figure 11: Community detection performance in noisy conditions (Physician).

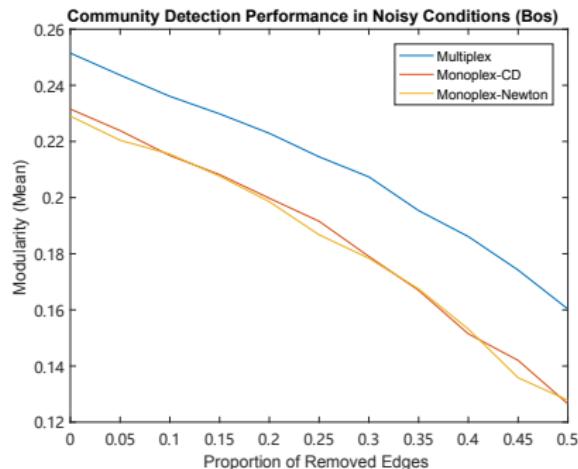


Figure 12: Community detection performance in noisy conditions (Bos).

Conclusion

- Summary:
 - A novel objective for multiplex community detection.
 - A representation-based multiplex community detection framework.
 - Increased performance compared to other monoplex methods in several multiplex network datasets, especially in noisy conditions.
- Future work:
 - Other implementations of the learning and clustering algorithms for more efficiency and accuracy.
 - Handling other types of networks (e.g. directed and weighted network, temporal network, heterogeneous network, etc).
 - Dealing with 'negative transfer' in the community detection context.