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Introduction Background

Background

Community detection:

Objective: to find densely connected components in networks that in
reality represent cohesive communities [1].
Applications: setting up efficient and effective recommendation systems
[2], handling navigation queries [3], establishing dedicated mirror server
[4], etc.

Community detection in multiplex networks:

Multiplex network: the same set of nodes are connected by multiple types
of edges [5]. Also known as multilayer network [6] or multidimensional
network [7].
Objectives: to find a community partition for all layers [8, 9, 10] or a
subset of layers [11].
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Introduction Contribution

Contribution

First to formulate the multiplex community detection problem as to
to refine community detection results in some layer with transferred
knowledge from other layers.

Design a representation-based multiplex community detection frame-
work, and implement it with an extended symmetric non-negative ma-
trix factorization approach for learning representations and k-means for
clustering representations.

Our algorithm outperforms the other representation-based community
detection algorithms, especially when the target layer that receives
transferred knowledge is noisy (e.g. much sparser than other layers).
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Framework

Framework

Problem

Given a N -layer multiplex network G(V,E1, ..., EN ) with adjacency
matrices A1, ...,AN , find distinct community partition in some layer K ′,
CK′ , so that both transferred knowledge from other layers and
layer-specific features of K ′th layer are exploited.
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⋮
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Clustering Representations

Figure 1: The overview of our framework.
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Algorithm Learning Representations

Learning Representations

Stochastic Block Model [12]

Utility matrix:
U = A (1)

Learning objective:
min
H>0

L = ||A−HHT ||2F (2)

Objective

min
X>0,B1,...,BN>0

L =

N∑
K=1

||AK − [X BK ][X BK ]T ||2F

=

N∑
K=1

||AK −XXT −BKBT
K ||2F (3)
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Algorithm Learning Representations

Learning Representations

Theorem 1

The sum of reconstruction error, L, can’t be minimized to zero.

Proof

We only need to prove that ||AK −XXT −BKBT
K ||2F > 0, which is

equivalent to AK 6= XXT + BK . We prove this by showing that
XXT +BKBT

K is positive semi-definite and that AK is not. First, for any
non-zero vector s ∈ Rn×1, we have

sT (XXT + BKBT
K)s = sTXXT s+ sTBKBT

Ks

= gT g + hTh

= ||g||2 + ||h||2 > 0 (4)

where g = XT s, h = BT
Ks. This shows that XXT + BKBT

K is positive
semi-definite.
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Algorithm Learning Representations

Learning Representations

Proof (cont’d)

Then, for undirected networks with no self-loops, we have AK to be
symmetric and

n∑
i=1

λi = Tr(AK) =

n∑
i=1

AKii = 0 (5)

where λ1, ..., λn are the n eigenvalues of AK . Therefore, either there is at
least some λi < 0 or λ1 = ... = λn = 0. However, since AK is symmetric,
λ1 = ... = λn = 0 directly leads to AK = 0. Thus, λi < 0 holds, which
means AK can’t be positive semi-definite.

Zexi Huang Transfer Learning for Community Detection June 6, 2018 8 / 23



Algorithm Learning Representations

Learning Representations

Objective

min
X>0,B1,...,BN>0

L =

N∑
K=1

||AK −XXT −BKBT
K ||2F (6)

Karush-Kuhn-Tucker Conditions

Introduce the multipliers Λ,ΓK and the Lagrangian

L(X,BK) = L− Tr(ΛXT )−
N∑

K=1

Tr(ΓKBT
K) (7)

From the stationarity of Karush-Kuhn-Tucker conditions we have

∂L
∂X

=
∂L

∂X
−Λ = 0,

∂L
∂BK

=
∂L

∂BK
− ΓK = 0 (8)
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Algorithm Learning Representations

Learning Representations

Karush-Kuhn-Tucker Conditions (cont’d)

which leads to

Λ = 4NXXTX + 4

N∑
K=1

(BKBT
K −AK)X (9)

ΓK = 4BKBT
KBK + 4(XXT −AK)BK (10)

Then, from the complementary slackness of Karush-Kuhn-Tucker
conditions

ΛijXij = 0,ΓKijBKij = 0 (11)

Substituting Eq.9 and Eq.10 into Eq.11, we have
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Algorithm Learning Representations

Learning Representations

Karush-Kuhn-Tucker Conditions (cont’d)

(−
N∑

K=1

(AK −BKBT
K)X +NXXTX)ijXij = 0 (12)

(−(AK −XXT )BK + BKBT
KBK)ijBKij = 0 (13)

Alternating Multiplicative Update Rules

Xij ← Xij

√√√√ ((
∑N

K=1(AK −BKBT
K))+X)ij

((
∑N

K=1(AK −BKBT
K))−X)ij + (NXXTX)ij

(14)

BKij ← BKij

√
((AK −XXT )+BK)ij

((AK −XXT )−BK)ij + (BKBT
KBK)ij

(15)
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Algorithm Learning Representations

Learning Representations

Theorem 2

The limiting solutions of the update rules in Eq.14 and Eq.15 satisfy
Karush-Kuhn-Tucker conditions in Eq.12 and Eq.13.

Proof

We only need to prove that Eq.14 satisfies Eq.12 at convergence. At
convergence, we have X∞ = Xt+1 = Xt = X. Then, from Eq.14

Xij = Xij

√√√√ ((
∑N

K=1(AK −BKBT
K))+X)ij

((
∑N

K=1(AK −BKBT
K))−X)ij + (NXXTX)ij

(16)

Square both sides, multiply it by the denominator, and transpose it, we get

(((

N∑
K=1

(AK−BKBT
K))

−
−(

N∑
K=1

(AK−BKBT
K))

+

)X+NXXTX)ijX
2
ij = 0 (17)
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Algorithm Learning Representations

Learning Representations

Proof (cont’d)

Note that

(

N∑
K=1

(AK −BKBT
K))

+ − (

N∑
K=1

(AK −BKBT
K))

−
=

N∑
K=1

(AK −BKBT
K)

(18)
Therefore, Eq.17 reduces to

(−
N∑

K=1

(AK −BKBT
K)X +NXXTX)ijX

2
ij = 0 (19)

Eq.19 is equivalent to Eq.12, the respective Karush-Kuhn-Tucker
condition, since both require either the first term
(−

∑N
K=1(AK −BKBT

K)X +NXXTX)ij to be zero or the second terms
Xij , X2

ij to be zero.
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Algorithm Learning Representations

Learning Representations

Algorithm 1 learn representation(A1 , ...,AN )

Input: Adjacency matrices of a N -layers multiplex network A1, ...,AN

Output: A common feature matrix X and layer-specific feature matrices
B1, ...,BN

1: X = 0, B1, ...,BN = 0
2: for t = 1→ T do

3: Xij ← Xij

√
((
∑N

K=1(AK−BKBT
K))+X)ij

((
∑N

K=1(AK−BKBT
K))−X)ij+(NXXTX)ij

4: for K = 1→ N do

5: BKij ← BKij

√
((AK−XXT )+BK)ij

((AK−XXT )−BK)ij+(BKBT
KBK)ij

6: end for
7: end for
8: return X, B1, ...,BN
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Algorithm Clustering Representations

Clustering Representations

Algorithm 2 cluster representation(X,BK)

Input: The common feature matrix X and layer-specific feature matrices
BK of Kth layer.

Output: The community partition for Kth layer.
1: CK ← k -means([X BK ])
2: return CK
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Experiments Settings

Settings

Baselines: Monoplex-CD [13], Monoplex-Newton [14].

Datasets:

Multiplex social networks: AUCS [15], Seventhgrade [16] and Physician
[17].
Multiplex biological networks: Bos [18, 19] and Celegans [20, 21].
Multiplex online networks: ff-tw-yt [22].

Metric: modularity [23].

Environment: MATLAB 9.0.0.341360 (R2016a).
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Experiments Results

Convergence Analysis
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Figure 2: Reconstruction Error vs.
Number of Iterations (AUCS).
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Figure 3: Reconstruction Error vs.
Number of Iterations (Seventhgrade).
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Experiments Results

Convergence Analysis
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Figure 4: Reconstruction Error vs.
Number of Iterations (Physician).
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Figure 5: Reconstruction Error vs.
Number of Iterations (Bos).
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Experiments Results

Convergence Analysis
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Figure 6: Reconstruction Error vs.
Number of Iterations (Celegans).
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Figure 7: Reconstruction Error vs.
Number of Iterations (ff-tw-yt).
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Experiments Results

Comparative Analysis

AUCS Seventhgrade Physician Bos Celegans ff-tw-yt
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Figure 8: Comparison of community detection performance in terms of
modualrity. Error bars depict standard errors.
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Experiments Results

Noisy Condition Analysis
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Figure 9: Community detection
performance in noisy conditions (AUCS).
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Figure 10: Community detection
performance in noisy conditions
(Seventhgrade).
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Experiments Results

Noisy Condition Analysis
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Figure 11: Community detection
performance in noisy conditions
(Physician).
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Figure 12: Community detection
performance in noisy conditions (Bos).

Zexi Huang Transfer Learning for Community Detection June 6, 2018 22 / 23



Conclusion

Conclusion

Summary:

A novel objective for multiplex community detection.
A representation-based multiplex community detection framework.
Increased performance compared to other monoplex methods in several
multiplex network datasets, especially in noisy conditions.

Future work:

Other implementations of the learning and clustering algorithms for more
efficiency and accuracy.
Handling other types of networks (e.g. directed and weighted network,
temporal network, heterogeneous network, etc).
Dealing with ‘negative transfer’ in the community detection context.
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