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s
Background

o Community detection:

o Objective: to find densely connected components in networks that in
reality represent cohesive communities [1].

o Applications: setting up efficient and effective recommendation systems
[2], handling navigation queries [3], establishing dedicated mirror server
[4], etc.

@ Community detection in multiplex networks:

e Multiplex network: the same set of nodes are connected by multiple types
of edges [5]. Also known as multilayer network [6] or multidimensional
network [7].

o Objectives: to find a community partition for all layers [8, 9, 10] or a
subset of layers [11].
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Contribution

@ First to formulate the multiplex community detection problem as to
to refine community detection results in some layer with transferred
knowledge from other layers.

@ Design a representation-based multiplex community detection frame-
work, and implement it with an extended symmetric non-negative ma-
trix factorization approach for learning representations and k-means for
clustering representations.

@ Our algorithm outperforms the other representation-based community
detection algorithms, especially when the target layer that receives
transferred knowledge is noisy (e.g. much sparser than other layers).
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Framework

Framework

Problem

Given a N-layer multiplex network G(V, E1, ..., Ex) with adjacency
matrices A1, ..., A, find distinct community partition in some layer K’,
Ckg, so that both transferred knowledge from other layers and
layer-specific features of K'th layer are exploited.

Uy [X B4]

: Learning Representations : Clustering Representations
Uk, > [XBg,] > Cx,
Uy (X By]

Figure 1: The overview of our framework.
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Algorithm Learning Representations

Learning Representations

Stochastic Block Model [12]
Utility matrix:

U=A
Learning objective:

min [, = [|A — HHT||%

H> (2)
Objective
N
i = _ T2
sl = 2 1A~ BRI BTl
N
= Ak - XX" - BxkBY||% (3)
K=1
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Algorithm Learning Representations

Learning Representations

Theorem 1

The sum of reconstruction error, L, can't be minimized to zero.

Proof

We only need to prove that [|Ax — XXT — BxkBZL||% > 0, which is
equivalent to A # XX” + Bg. We prove this by showing that

XXT + BgBZ is positive semi-definite and that A is not. First, for any
non-zero vector s € R™ ! we have

sT(XXT + BkBY)s = sTXXTs + sTBxBk s
=g g+h"h
= |lgll* +[Ipl* > 0 (4)

where g = XT's,h = BL s. This shows that XX* + BxBZ is positive
semi-definite.

v

Zexi Huang Transfer Learning for Community Detection June 6, 2018 7/23




Algorithm Learning Representations

Learning Representations

Proof (cont'd)

Then, for undirected networks with no self-loops, we have A g to be
symmetric and

Z i = Tr(Ak) = Z Akii =0 (5)
i=1 i=1

where Ay, ..., A, are the n eigenvalues of A . Therefore, either there is at
least some \; < 0 or A\; = ... = \,, = 0. However, since A g is symmetric,
A1 =...= )\, = 0 directly leads to A = 0. Thus, A\; < 0 holds, which
means A i can't be positive semi-definite.
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Algorithm Learning Representations

Learning Representations

Objective
N
i = _ T _ T2
X>0,BT},I.1,BN>OL - KZ—% |[Ar — XX BxBx|l% (6)

Karush-Kuhn-Tucker Conditions
Introduce the multipliers A, ' and the Lagrangian

N
L(X,Bg) = L—Te(AXT) - > Tr(TxB%) (7)
K=1

From the stationarity of Karush-Kuhn-Tucker conditions we have

oL oL oL oL
o A=), = _Tp=0 8
oX ~ 0X "0Bx  OBx © ()J
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Algorithm Learning Representations

Learning Representations

Karush-Kuhn-Tucker Conditions (cont’'d)

which leads to

N
A =4ANXXTX +4) (BxkBL — Ax)X
K=1

'y =4BxkBLBy +4(XXT — Ag)Bg

Then, from the complementary slackness of Karush-Kuhn-Tucker

conditions
A X =0,Tki;Bgi; =0

Substituting Eq.9 and Eq.10 into Eq.11, we have
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Algorithm Learning Representations

Learning Representations

Karush-Kuhn-Tucker Conditions (cont’d)
N
(= Y (Ax - BKkBR)X + NXX"X);X;; =0 (12)
K=1
(—(Ax — XX")Bg + BkBLBK)ijBxij =0 (13)
Alternating Multiplicative Update Rules
N T\\+
Ax —BkB X)ij
(X x=1(Ax = BrBEg)) X)ij + (NXXTX);
Ag — XXT) Bg)ij
Bics ¢ Br \/ (As —XXT) Br)y (15)
(Ag — XXT)"Bg)ij + (BkBgBk)ij
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Learning Representations
Learning Representations

Theorem 2

The limiting solutions of the update rules in Eq.14 and Eq.15 satisfy
Karush-Kuhn-Tucker conditions in Eq.12 and Eq.13.

Proof

We only need to prove that Eq.14 satisfies Eq.12 at convergence. At
convergence, we have X*® = X! = X! = X. Then, from Eq.14

X = Xij ((Z%:l(AK — BxBL))"X);;

(CR—1(Ax —BgBL)) X);; + (NXXTX),; £

Square both sides, multiply it by the denominator, and transpose it, we get

N N
() (Ak—BgBEL)) —(Z (AK_BKBII;))+)X+NXXTX)inz2j =0 (17)

y
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Algorithm Learning Representations

Learning Representations

Proof (cont'd)

Note that
N N N
(> (Ak —BgBE) = (Y (Ax —BgB%)) = > (Ax — BkBj)
K=1 K=1 K=1
(18)
Therefore, Eq.17 reduces to
N
(— ) (Ax - BgBE)X + NXX'X);; X7, =0 (19)
K=1

Eq.19 is equivalent to Eq.12, the respective Karush-Kuhn-Tucker
condition, since both require either the first term

(— Z%Zl(AK — BxB%)X + NXXTX);; to be zero or the second terms
Xij, ij to be zero.
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Learning Representations

Algorithm 1 learn_representation(Ay, ..., Ay)

Input: Adjacency matrices of a N-layers multiplex network Ay, ..., AN
Output: A common feature matrix X and layer-specific feature matrices
Bi,...By
: X=0,By,...,By=0
fort=1—1T do
N_ (Ax—BgBL)TX),;
Xij € X <<z%:f((§ﬁfxs(KB£>)—Xij)wv;cijxm
for K =1— N do

N - (Ax—XXT)"Bg)i;
BKz] — BKU\/((AKXXT)_BK)ij+(BKB£BK)ij

N =

w

AN

end for
end for
8: return X, By, ....By

N o
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Algorithm Clustering Representations

Clustering Representations

Algorithm 2 cluster_representation(X, Bx)

Input: The common feature matrix X and layer-specific feature matrices
Bg of Kth layer.
Output: The community partition for Kth layer.
1. Cx  k-means([X Bg])
2: return Cg
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Settings
@ Baselines: Monoplex-CD [13], Monoplex-Newton [14].
@ Datasets:
o Multiplex social networks: AUCS [15], Seventhgrade [16] and Physician
[17].

o Multiplex biological networks: Bos [18, 19] and Celegans [20, 21].
e Multiplex online networks: ff-tw-yt [22].

Metric: modularity [23].
Environment: MATLAB 9.0.0.341360 (R2016a).
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Convergence Analysis

Reconstruction Error vs. Number of Iterations (AUCS)

" Reconstruction Error vs. Number of Iterations (Seventhgrade)
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Figure 2: Reconstruction Error vs.

Figure 3: Reconstruction Error vs.
Number of Iterations (AUCS).

Number of Iterations (Seventhgrade).
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Convergence Analysis

Reconstruction Error vs. Number of Iterations (Physician)

Reconstruction Error vs. Number of Iterations (Bos)
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Figure 4: Reconstruction Error vs. Figure 5: Reconstruction Error vs.
Number of Iterations (Physician). Number of Iterations (Bos).
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Convergence Analysis

Reconstruction Error vs. Number of Iterations (Celegans)

o Reconstruction Error vs. Number of { (Ff-tw-yt)
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Figure 6: Reconstruction Error vs.

Figure 7: Reconstruction Error vs.
Number of Iterations (Celegans).

Number of Iterations (ff-tw-yt).
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Comparative Analysis

Comparison of Community Detection Performance
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Figure 8: Comparison of community detection performance in terms of
modualrity. Error bars depict standard errors.
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T
Noisy Condition Analysis

[of ity Detection in Noisy C iti [t
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Figure 10: Community detection
performance in noisy conditions
(Seventhgrade).

Figure 9: Community detection
performance in noisy conditions (AUCS).
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T
Noisy Condition Analysis

C ity Detection Per in Noisy Conditi (
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Figure 11: Community detection
performance in noisy conditions
(Physician).

Figure 12: Community detection
performance in noisy conditions (Bos).
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Conclusion

Conclusion

@ Summary:

o A novel objective for multiplex community detection.
e A representation-based multiplex community detection framework.
o Increased performance compared to other monoplex methods in several
multiplex network datasets, especially in noisy conditions.
o Future work:

e Other implementations of the learning and clustering algorithms for more
efficiency and accuracy.

o Handling other types of networks (e.g. directed and weighted network,
temporal network, heterogeneous network, etc).

e Dealing with ‘negative transfer’ in the community detection context.
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