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摘要

摘 要

复杂网络中的社团检测是最为重要的数据挖掘任务之一。关于多维社团检测

的前人研究旨在发现适用于多层乃至所有层的社团划分。基于对现实网络的分析，

本文提出另一个新的多维社团检测的目标，即通过从其他层迁移知识来提升某些

层的社团划分结果。为了解决这一新的问题，本文提供了一个基于表征的多维社

团检测框架：先同时学习所有层共同的特性表征和每层独有的特性表征，之后对

学到的两种表征结合并进行聚类，从而得到社团划分。本文设计了一种拓展对称

非负矩阵分解方法来学习表征，并利用k-means算法对表征进行聚类，从而实现

了这一框架。本文的方法在多个多维网络数据集上与其他基于表征的社团检测方

法进行了性能比较。结果显示，本文的方法在以模块度为依据的性能上优于其他

方法，尤其是当接受迁移知识的目标层噪声较大（如远比其他层稀疏）时。通过

随机去除一些目标层的边，本文还模拟了在输入数据高度不可靠情况下的性能测

试。结果表明，本文提供的方法对于噪声的健壮性良好，能在去除目标层一半的

边之后还能保持高达83.7%的性能，而其他方法则只能保持约50%。

关键词：复杂网络，多维社团检测，迁移学习，数据挖掘
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ABSTRACT

ABSTRACT

Community detection in complex networks is one of the most fundamental data

mining tasks. Previous works on multiplex community detection aim to find a commu-

nity partition across several or all layers. Here, based on the observation of real-world

networks, we propose another novel objective for multiplex community detection, that

is, to refine community detection results in some layer with transferred knowledge from

other layers. To solve this new problem, we provide a representation-based multiplex

community detection framework, which first learns a shared common feature representa-

tion and layer-specific feature representations simultaneously and then cluster the com-

bined representations for community partition. The framework is implemented with an

extended symmetric non-negative matrix factorization approach for learning represen-

tations and k-means for clustering representations. This implementation is compared to

other representation-based community detection algorithms on several multiplex network

datasets. Experimental results show that our implementation outperforms other methods

in terms of modularity, especially when the target layer which receives transferred knowl-

edge contains much noise (e.g. sparser than other layers). We further evaluate our algo-

rithm in highly unreliable conditions by randomly removing a set of edges in the target

layer. It is shown that our algorithm is quite robust, retaining as high as 83.7% of its

original performance even when half of the edges are removed, while other methods can

only retain about 50%.

Keywords: complex networks, multiplex community detection, transfer learning, data

mining
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Chapter 1 Introduction

Chapter 1 Introduction

1.1 Background

1.1.1 Network

The modern science of networks has brought significant advances to our understand-

ing of complex systems [1], which spans the natural, social, as well as computer science

and engineering [2–4]. Networks consist of nodes (or vertices) which represent entities,

and edges (or links) that mimick their interactions. Networks can be found in various

real-world contexts. Internet, for example, is the physical network of computers, routers

and modems which are linked via cables or wireless signals. Another famous example is

FacebookÀ, a large online social network that connects billions of people virtually. Net-

works also find their existence in many other areas, include biology [5], biochemistry [6],

economics [7], ecology [8], epidemiology [9], political science [10], computer science

[11], social science [12], etc.

For decades, network analysis and mining focus on monoplex networks (see Figure

1-1, for example), where all edges represent a single type of interaction between nodes

[13].

The most widely used model of the monoplex network is graph, denoted by 𝐺(𝑉,𝐸),

where 𝑉 = {𝑣1,𝑣2, ...,𝑣𝑛} is the collection of 𝑛 nodes and 𝐸= {(𝑣𝑖,𝑣𝑗)|𝑣𝑖 is connected to 𝑣𝑗}
is the collection of 𝑚 edges in the network. For each graph, a corresponding adjacency

matrix A ∈ R𝑛×𝑛 records the connection information. In this thesis, we limit our scope

to unweighted and undirected networks that contain no self-loops. For such networks,

the entries of the adjacency matrix are specified by

A𝑖𝑗 =

⎧⎪⎨⎪⎩1 if node 𝑖 and 𝑗 is connected

0 otherwise
,16 𝑖, 𝑗 6 𝑛 (1-1)

À https://www.facebook.com/
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Fig. 2. Community structure in social networks. (a) Zachary’s karate club, a standard benchmark in community detection. The colors correspond to the
best partition found by optimizing themodularity of Newman and Girvan (Section 6.1). Reprinted figurewith permission fromRef.[48].
©2004,by IOP Publishingand SISSA.
(b) Collaboration network between scientists working at the Santa Fe Institute. The colors indicate high level communities obtained by the algorithm of
Girvan and Newman (Section 5.1) and correspond quite closely to research divisions of the institute.Further subdivisions correspond to smaller research
groups,revolvingaround project leaders.Reprinted figurewith permission fromRef.[12].
©2002,by theNational Academy of Science of theUSA.
(c)Lusseau’snetwork of bottlenosedolphins.Thecolors label thecommunities identified through theoptimization of amodified version of themodularity
ofNewmanandGirvan,proposedbyArenasetal.[49](Section12.1).Thepartitionmatchesthebiological classificationof thedolphinsproposedbyLusseau.
Reprinted figurewith permission fromRef.[49].
©2008,by IOP Publishing.

the president, respectively (indicated by squares and circles).The question iswhether from the original network structure
it is possible to infer the composition of the two groups.Indeed,by lookingat Fig.2aone can distinguish two aggregations,
onearound vertices33and 34 (34 is thepresident),theother around vertex 1 (the instructor).Onecan also identify several
vertices lying between the twomain structures, like 3,9,10; such vertices are often misclassified by community detection
methods.
Fig. 2b displays the largest connected component of a network of collaborations of scientists working at the Santa Fe

Institute(SFI).Thereare118vertices,representingresidentscientistsatSFIandtheir collaborators.Edgesareplacedbetween
scientists that havepublished at least onepaper together.Thevisualization layout allowsto distinguish disciplinarygroups.
In this network one observesmany cliques, as authors of the same paper are all linked to each other. There are but a few
connections betweenmost groups.
In Fig.2cweshow thenetwork of bottlenosedolphins living in Doubtful Sound (New Zealand)analyzed by Lusseau [51].

Thereare62dolphinsandedgeswereset betweenanimalsthatwereseen togethermoreoften thanexpectedbychance.The
dolphinsseparated in twogroupsafter adolphin left theplace for sometime(squaresand circles in the figure).Such groups
are quite cohesive, with several internal cliques, and easily identifiable: only six edges join vertices of different groups.
Due to this natural classification Lusseau’s dolphins’ network, likeZachary’s karate club, is often used to test algorithms for
community detection (Section 15.1).
Protein–protein interaction (PPI) networks are subject of intense investigations in biology and bioinformatics, as the

interactions between proteins are fundamental for each process in the cell [52]. Fig. 3 illustrates a PPI network of the rat
proteome [53].Each interaction is derived by homology from experimentally observed interactions in other organisms. In
our example, the proteins interact very frequently with each other, as they belong to metastatic cells, which have a high
motility and invasivenesswith respect to normal cells.Communitiescorrespond to functional groups,i.e.to proteinshaving
the same or similar functions, which are expected to be involved in the same processes. The modules are labeled by the
overall functionor thedominatingprotein class.Most communitiesareassociated tocancer andmetastasis,which indirectly
showshow important detectingmodules in PPInetworks is.

Figure 1-1 Lusseau’s network of bottlenose dolphins [14]. Edges connect dolphins which have shown

preferred companionship. This figure is generated by [15].
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Chapter 1 Introduction

And because the network is undirected and contains no self-loop, we have

A𝑖𝑗 =A𝑗𝑖,16 𝑖, 𝑗 6 𝑛 & A𝑖𝑖 = 0,16 𝑖6 𝑛 (1-2)

The number of edges that are connected to a node 𝑖 is called the degree of 𝑖, denoted as

𝑘𝑖. We have

𝑘𝑖 =
𝑛∑︁

𝑗=1

A𝑖𝑗 (1-3)

The degree of nodes of real-world networks usually follows a power law distribution [16],

𝑓(𝑘)∼ 𝑘−𝛾 (1-4)

where 𝛾 is a parameter whose value is typically in the range 2< 𝛾 < 3. Networks having

this property is called scale-free networks [17].

Recently, however, much more efforts have been devoted to analysis of multiplex

networks [18] (or equivalently referred to as multidimensional networks [19] or multi-

layer networks [20]), where the same set of nodes are connected by multiple types of

edges, which allows encoding richer and more complex interactions of real-world dy-

namic systems (see Figure 1-2, for example).

A multiplex network can be represented with several monoplex networks with a

shared set of nodes. Each monoplex network is called a layer of the multiplex network.

A 𝑁 -layer multiplex network 𝐺(𝑉,𝐸1, ...,𝐸𝑁 ) thus have a set of 𝑛 nodes and 𝑁 sets

of edges, each with 𝑚𝐾 edges, where 1 6 𝐾 6 𝑁 . Each layer also has a respective

adjacency matrix A𝐾 ,

A𝐾𝑖𝑗 =

⎧⎪⎨⎪⎩1 if node 𝑖 and 𝑗 are connected in 𝐾th layer

0 otherwise
,16 𝑖, 𝑗 6 𝑛,16𝐾 6𝑁

(1-5)

Degree of nodes is computed for each layer. The degree of node 𝑖 in 𝐾th layer is

𝑘𝐾𝑖 =
𝑛∑︁

𝑗=1

A𝐾𝑖𝑗 (1-6)

1.1.2 Community Detection

In real-world networks, a very interesting phenomenon is high concentrations of

connections within special groups of nodes, and low concentrations between these groups,

3
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248 X. Wang, J. Liu / Physica A 471 (2017) 244–252

Fig. 1. Indonesian terrorist multiplex network with four layers (drawn with MuxViz [12]).

After that, there are some nodes may be assigned to more than one community. For these nodes, we assign them to the
communities which the maximum number of their neighbors belongs to. If there are two or more communities in which a
node has the equal maximum number of its neighbors, we can pick a community randomly. Finally, we get a partition of the
multiplex network in which each node is only assigned to one community.

Figure 1-2 Indonesian Noordin Top terrorist multiplex network [21]. Edges in each layer represent

exchanged communication, financial involvement, common operations and mutual trust.

This figure is generated by [22].

which is referred to as community structure [23]. A vivid example of community struc-

ture is shown in Figure 1-3. Scientists in the same research area, i.e. community, gener-

ally collaborate more closely, while scientists from different research areas seldom work

together. There are various examples of other community structures in our daily life:

families, work groups, friend circles, universities, nations, to mention a few. In other

networked systems, community structure is also omniscient: group of pages on related

topics in World Wide Web [24, 25], collection of proteins with the same function in pro-

tein interaction networks [26, 27] and functional modules such as cycles and pathways in

metabolic networks [28, 29].

Community detection in networks has various applications. For example, identify-

ing clusters of customers with similar interests in the network of purchase relationships

4
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S. Fortunato, D. Hric / Physics Reports 659 (2016) 1–44 3

Fig. 1. Internet network. Reprinted figure with permission from www.opte.org.

Fig. 2. Collaboration network of scientists working at the Santa Fe Institute (SFI). Edges connect scientists that have coauthored at least one paper. Symbols
indicate the research areas of the scientists. Naturally, there are more edges between scholars working on the same area than between scholars working
in different areas.
Source: Reprinted figure with permission from [8].
© 2002, by the National Academy of Sciences, USA.

The subgraph is schematically illustrated in Fig. 3. Its vertices are enclosed by the dashed contour. The magenta dots are
the external vertices connected to the subgraph, while the black ones are the remaining vertices of the network. The blue
lines indicate the edges connecting the subgraph to the rest of the network.

Figure 1-3 Collaboration network of scientists working at the Santa Fe Institute. Edges connect scien-

tists who have co-authored at least one paper. Different symbols indicate different research

areas of the scientists. This figure is generated by [23].

5
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can help online retailers (e.g. AmazonÀ) set up efficient and effective recommendation

systems [30]. Community detection is also important for social science analysis [31],

handling navigation queries [32], establishing dedicated mirror server [33], etc.

Due to wide applicability of community detection, huge research efforts have been

put into developing effective community detection algorithms. For monoplex networks,

the task is to find a community partition C = {𝐶1, ...,𝐶𝑘𝑐𝑜𝑚}, where 𝑘𝑐𝑜𝑚 is the number

of communities in the network and 𝐶𝑖 = {𝑛𝑖1, ...,𝑛𝑖𝑞𝑖},1 6 𝑖 6 𝑘𝑐𝑜𝑚 is a collection of

nodes which are densely connected to each other, compared to nodes that don’t belong

to this collection. Several measures have been proposed to evaluate community detection

effectiveness, such as normalized cut [34] and modularity [35]. Unfortunately, exactly

optimizing these two metrics is NP-hard, which leads to numerous algorithms to heuris-

tically solve the problem.

Traditional methods for monoplex community detection include graph partitioning

(e.g. Kernighan Lin algorithm [36]) which tries to minimize number of edges between

communities, hierarchical clustering [37] which iteratively merge clusters of nodes if

their similarity is high (agglomerative) or iteratively split cluster of nodes by removing

edges connecting vertices with low similarity (divisive) and partitional clustering (e.g.

k-means [38]) which embeds nodes into a metric space and then minimize the distance

between nodes and their centroids. The number of community detection algorithms is still

growing fast, with representative ones such as modularity optimization [39], Louvain [40]

and Infomap [41].

Unlike community detection in monoplex networks, multiplex community detection

only gains its popularity recently. The objective of multiplex community detection is

often defined as to find a community partition C for all layers of a multiplex network

[42], though some recent work has argued that community structure can be significant

only for a subset of layers [43].

To find community for all layers, several methods have been proposed. A straightfor-

ward idea is to to aggregate all layers and apply monoplex algorithms on the aggregated

network [44]. For example, in binary aggregation, nodes are connected in the aggregated

network if they are connected in any layer of the multiplex network. Frequency-based

aggregation counts the number of connection in all layers and use this number as weight

À https://www.amazon.com/
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Chapter 1 Introduction

in the aggregated network. Another approach is ensemble clustering, in which mono-

plex algorithms are applied to each layer of the multiplex network, and later a ensemble

strategy is used to find a consensus across layers [45]. More recently, some extended

versions of monoplex algorithms have sprung up to handle the multiplex problem. [46]

extended the InfoMap algorithm, [47] was based on the Quick algorithm and [48] took an

extended seed-centric approach. Tensor factorization approach [49] can also be viewed

as an extended version of spectral algorithms for monoplex networks.

1.1.3 Transfer Learning

Transfer learning aims to extract the knowledge from one or more source task and

apply the knowledge to a target task. Compared to traditional machine laerning methods

which try to learn each task from scratch, transfer learning techniques try to transfer the

knowledge from some source tasks to a target task (see Figure 1-4). Its application can

be found in classification of web documents[50], sentiment [51] and image [52], WiFi

localization [53], computed aided design [54], name-entity recognition [55], to mention

a few.

2

[9], [10]). However, in this paper, we only focus on transfer
learning for classification, regression and clustering problems
that are related more closely to data mining tasks. By doing
the survey, we hope to provide a useful resource for the data
mining and machine learning community.

The rest of the survey is organized as follows. In the next
four sections, we first give a general overview and define
some notations we will use later. We then briefly survey the
history of transfer learning, give a unified definition of transfer
learning and categorize transfer learning into three different
settings (given in Table 2 and Figure 2). For each setting, we
review different approaches, given in Table 3 in detail. After
that, in Section 6, we review some current research on the
topic of “negative transfer”, which happens when knowledge
transfer has a negative impact on target learning. In Section 7,
we introduce some successful applications of transfer learning
and list some published data sets and software toolkits for
transfer learning research. Finally, we conclude the article with
a discussion of future works in Section 8.

2 OVERVIEW
2.1 A Brief History of Transfer Learning
Traditional data mining and machine learning algorithms make
predictions on the future data using statistical models that are
trained on previously collected labeled or unlabeled training
data [11], [12], [13]. Semi-supervised classification [14], [15],
[16], [17] addresses the problem that the labeled data may
be too few to build a good classifier, by making use of a
large amount of unlabeled data and a small amount of labeled
data. Variations of supervised and semi-supervised learning
for imperfect datasets have been studied; for example, Zhu
and Wu [18] have studied how to deal with the noisy class-
label problems. Yang et al. considered cost-sensitive learning
[19] when additional tests can be made to future samples.
Nevertheless, most of them assume that the distributions of
the labeled and unlabeled data are the same. Transfer learning,
in contrast, allows the domains, tasks, and distributions used
in training and testing to be different. In the real world, we
observe many examples of transfer learning. For example,
we may find that learning to recognize apples might help to
recognize pears. Similarly, learning to play the electronic organ
may help facilitate learning the piano. The study of Transfer
learning is motivated by the fact that people can intelligently
apply knowledge learned previously to solve new problems
faster or with better solutions. The fundamental motivation
for Transfer learning in the field of machine learning was
discussed in a NIPS-95 workshop on “Learning to Learn”
1, which focused on the need for lifelong machine-learning
methods that retain and reuse previously learned knowledge.

Research on transfer learning has attracted more and
more attention since 1995 in different names: learning to
learn, life-long learning, knowledge transfer, inductive trans-
fer, multi-task learning, knowledge consolidation, context-
sensitive learning, knowledge-based inductive bias, meta learn-
ing, and incremental/cumulative learning [20]. Among these,

1. http://socrates.acadiau.ca/courses/comp/dsilver/NIPS95 LTL/
transfer.workshop.1995.html

a closely related learning technique to transfer learning is
the multi-task learning framework [21], which tries to learn
multiple tasks simultaneously even when they are different.
A typical approach for multi-task learning is to uncover the
common (latent) features that can benefit each individual task.

In 2005, the Broad Agency Announcement (BAA) 05-29
of Defense Advanced Research Projects Agency (DARPA)’s
Information Processing Technology Office (IPTO) 2 gave a
new mission of transfer learning: the ability of a system to
recognize and apply knowledge and skills learned in previous
tasks to novel tasks. In this definition, transfer learning aims
to extract the knowledge from one or more source tasks and
applies the knowledge to a target task. In contrast to multi-task
learning, rather than learning all of the source and target tasks
simultaneously, transfer learning cares most about the target
task. The roles of the source and target tasks are no longer
symmetric in transfer learning.

Figure 1 shows the difference between the learning
processes of traditional and transfer learning techniques. As
we can see, traditional machine learning techniques try to learn
each task from scratch, while transfer learning techniques try
to transfer the knowledge from some previous tasks to a target
task when the latter has fewer high-quality training data.

(a) Traditional Machine Learning (b) Transfer Learning

Fig. 1. Different Learning Processes between Traditional
Machine Learning and Transfer Learning

Today, transfer learning methods appear in several top
venues, most notably in data mining (ACM KDD, IEEE ICDM
and PKDD, for example), machine learning (ICML, NIPS,
ECML, AAAI and IJCAI, for example) and applications of
machine learning and data mining (ACM SIGIR, WWW and
ACL for example) 3. Before we give different categorizations
of transfer learning, we first describe the notations used in this
article.

2.2 Notations and Definitions
In this section, we introduce some notations and definitions
that are used in this survey. First of all, we give the definitions
of a “domain” and a “task”, respectively.

In this survey, a domain D consists of two components: a
feature space X and a marginal probability distribution P (X),
where X = {x1, . . . , xn} ∈ X . For example, if our learning

2. http://www.darpa.mil/ipto/programs/tl/tl.asp
3. We summarize a list of conferences and workshops where transfer

learning papers appear in these few years in the following webpage for
reference, http://www.cse.ust.hk/∼sinnopan/conferenceTL.htm

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

Figure 1-4 Different learning processes between traditional machine learning and transfer learning.

This figure is generated by [56].

Depending on whether source and target domains or tasks are the same, transfer

learning can be categorized into three sub-setting [56]. In inductive transfer learning set-

ting, the target task is different from the source task, no matter when the source and target

domains are the same or not. Classical algorithms for inductive transfer learning include

7
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TrAdaBoost [57], MT-IVM [58] and TAMAR [59]. In the transductive transfer learning

setting, the source and target tasks are the same, while the source and target domains

are different. KMM [60], SCL [61] and MMDE [53] are some widely-used algorithms

for transductive transfer learning. In the unsupervised transfer learning setting, the target

task is different from but related to the source task, and it focuses on unsupervised learn-

ing tasks such as clustering. For unsupervised transfer learning, STC [62] is proposed to

transfer clustering problem and TDA [63] is developed for transfer dimensionality reduc-

tion problem.

1.2 Contribution

The major contributions of our work are fourfold:

1.We propose a novel objective for multiplex community detection, i.e., to refine

community detection results in some layer with transferred knowledge from other

layers, based on our observation of real-world networks. To the best of our knowl-

edge, we are the first to formulate the multiplex community detection problem in

this way.

2.To achieve this new objective, we design a representation-based multiplex commu-

nity detection framework, which first learns a shared common feature representa-

tion and layer-specific feature representations simultaneously and then cluster the

combined representations for community partition. This framework can easily

accommodate to different scenarios by selecting different learning and clustering

algorithms.

3.We provide an implementation of the framework, which includes an extended sym-

metric non-negative matrix factorization approach for learning representations and

k-means for clustering representations. We theoretically prove that under the up-

date rules of our learning algorithm, the solution converges to a Karush-Kuhn-

Tucker stationary point, if it converges.

4.We compare our algorithm to other representation-based community detection al-

gorithms on several multiplex network datasets, which shows that our algorithm

outperforms the others, especially when the target layer is noisy (e.g. much sparser

8



Chapter 1 Introduction

than other layers). We further verify this property by testing our algorithm on net-

works with removed edges.

1.3 Thesis Structure

The rest of this thesis is structured as follows: we unify the representation-based

community detection methods with a shared procedure and introduce several different

models of representation-based community detection in our next chapter. Chapter 3

presents our own work, which includes the formulation of our objective, our framework

and its implementation, as well as experiments and results. Finally, we summarize this

thesis and discuss some future research directions in Chapter 4.

9
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Chapter 2 Representation-based Community Detection

2.1 A Shared Procedure

Representation-based community detection techniques are a collection of methods

for monoplex community detection. They have a shared procedure as follows: First,

they define some objective function on the network 𝐺(𝑉,𝐸) to optimize. Then, some

utility matrix U of the graph depending on the objective function is projected into some

latent space in the optimization process, resulting in some latent feature representation

H. Finally, some clustering algorithm is applied to the learned latent representation H to

get the community partition result C. This shared procedure is illustrated in Figure 2-1.

Network 

𝐺(𝑉, 𝐸)

Construct Utility 

Matrix Based on the 

Objective Function Utility 

Matrix 𝐔

Learn Latent 

Representation Based 

on Optimization Latent 

Feature 𝐇
Community 

Partition C

Apply Clustering 

Algorithms

Figure 2-1 The shared procedure of representation-based community detection methods.

In the sections that follow, we will introduce different models of representation-

based community detection.

2.2 Stochastic Model

In stochastic model [64], the entry of adjacency matrix A𝑖𝑗 is viewed as the proba-

bility that node 𝑖 and 𝑗 are connected, which can be further considered to be determined

by the probability that this pair of nodes generate edges belonging to the same commu-

nity. Denote H ∈ R𝑛×𝑟 as the latent variables (where 𝑟 is the number of dimensions in

the latent space), such that H𝑖𝑘 represents the probability that node 𝑖 generates an edge

belonging to 𝑘th community. Then, the probability that node 𝑖 and 𝑗 is connected by an

edge in 𝑘th community is H𝑖𝑘H𝑗𝑘, and the probability they are connected can thus be

expressed as

A𝑖𝑗 =
𝑟∑︁

𝑘=1

H𝑖𝑘H𝑗𝑘 (2-1)

10
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As a result, the community detection problem can be formulated as a non-negative matrix

factorization,

min
H>0

𝐿= ||A−HH𝑇 ||2𝐹 (2-2)

Then, clustering algorithms can be applied to the latent variables H to obtain the com-

munity partition. Note that the utility matrix in stochastic model is simply the adjacency

matrix A.

2.3 Latent Space Model

The latent space model [65] maps the nodes in a network into a low-dimensional Eu-

clidean space such that the proximity between the nodes based on network connectivity

are kept in the latent space. Introduce P ∈ R𝑛×𝑛 as the proximity matrix for the net-

work with P𝑖𝑗 denoting the distance between node 𝑖 and and node 𝑗. When the distance

measure is specified (e.g. geodesic distance [66]), P can be computed from the network

adjacency matrix. Now, denote H ∈R𝑛×𝑟 as the coordinates of nodes in the latent space,

we have [67]

HH𝑇 =−1

2
(I− 1

𝑛
11𝑇 )(P∘P)(I− 1

𝑛
11𝑇 ) = ̃︀P (2-3)

where I is the identity matrix, 1 = (1, ...,1) and ∘ represents entrywise multiplication.

This can be formulated as the matrix factorization problem below,

min𝐿= ||̃︀P−HH𝑇 ||2𝐹 (2-4)

Then, clustering algorithms can be applied to the coordinates in latent space H to obtain

the community partition. Note that the utility matrix in stochastic model is ̃︀P.

2.4 Spectral Clustering Model

Spectral clustering [68] is related to graph partition which minimizes the number

of edges between communities, with some constraints to avoid singletons (i.e. communi-

ties only consisting of a single node). Their objective can be formulated as a min-trace

problem,

min
H𝑇H=I

𝐿= Tr(H𝑇 ̃︀LH) (2-5)
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where H ∈R𝑛×𝑟 represent latent features and ̃︀L is graph Laplacian and can be computed

by the adjacency matrix based on different types of constraints. For example,

̃︀L=

⎧⎪⎨⎪⎩D−A (Ratio Cut)

I−D−1/2AD−1/2 (Normalized Cut)
(2-6)

where D is the degree matrix of the network

D𝑖𝑗 =

⎧⎪⎨⎪⎩𝑘𝑖 if 𝑖= 𝑗

0 otherwise
06 𝑖, 𝑗 6 𝑛 (2-7)

̃︀L is the utility matrix for spectral clustering and rows of H can be clustered to get the

community partition.

2.5 Modularity Optimization Model

Modularity is a widely-accepted measure of community detection effectiveness.

Maximizing modularity on a network is equivalent to the following max-trace problem

[69],

max
Tr(H𝑇H)=𝑛

𝑄= Tr(H𝑇MH) (2-8)

where H∈R𝑛×𝑟 is the community indicator matrix and M is the modularity matrix, with

M𝑖𝑗 =A𝑖𝑗−
𝑘𝑖𝑘𝑗
2𝑚

,16 𝑖, 𝑗 6 𝑛 (2-9)

Modularity matrix M is the utility matrix for modularity optimization. Note that the

indicator matrix H can also be viewed as a latent feature matrix, and thus clustering

algorithms can be applied to its rows to obtain the community partition.

2.6 Nonlinear Mapping Model

While previous methods introduced in this chapter all find linear embedding of the

utility matrix as the feature matrix, in deep reconstruction model nonlinear embedding of

the utility matrix is generated. In [70], modularity matrix M, as input of an auto-encoder,

is mapped to a low-dimensional representation H ∈ R𝑟×𝑛. The 𝑖th column of H, which

12
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represents node 𝑖 in the latent space, is mapped as

h𝑖 = 𝑔(W𝐻m𝑖+d𝐻) (2-10)

where W𝐻 ∈R𝑟×𝑛, d𝐻 ∈R𝑟×1 are the parameters to be learned in the encoder, m𝑖 is the

𝑖th column of the modularity matrix M, and 𝑔(·) is an element-wise nonlinear mapping,

such as sigmoid function

𝑔𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+ 𝑒−𝑥
(2-11)

or tanh function

𝑔𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥− 𝑒−𝑥

𝑒𝑥+ 𝑒−𝑥
(2-12)

The decoder maps the latent representation H back into the original data space,

r𝑖 = 𝑙(W𝑀h𝑖+d𝑀 ) (2-13)

where r𝑖 is the 𝑖th column of the reconstructed data R ∈ R𝑛×𝑛, W𝑀 ∈ R𝑛×𝑟, d𝑀 ∈
R𝑛×1 are the parameters to be learned in the decoder and 𝑙(·) is another element-wise

nonlinear mapping similar to 𝑔(·). The objective of the auto-encoder is to minimize the

reconstruction error between original M and reconstructed R,

min𝐿=
𝑛∑︁

𝑖=1

𝐿𝜃(m𝑖,r𝑖) (2-14)

where 𝐿𝜃(m𝑖,r𝑖) is a distance function (e.g. Euclidean distance or sigmoid cross-entropy

distance). When the parameters of the auto-encoder is learned, the columns of the latent

nonlinear embedding H can be clustered to find the community partition. In practice, a

series of auto-encoders can be stacked for the reconstruction task to take advantage of a

deep structure.
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Chapter 3 Transfer Learning for Multiplex Community Detection

3.1 Problem

3.1.1 Observation

While in Chapter 1 we introduced various methods and algorithms for community

detection in multiplex networks, all of them are based on a plausible assumption that the

underlying community partitions for all layers are identical, and their objective is thus

to find that partition. However, considering the fact that different layers of a multiplex

network encode different types of relationships, we argue that for each layer, there is a

distinct community structure behind it. And while the community partitions for different

layers can be related to each other as nodes may share some common behaviors across

layers (e.g. high-degree), they should be intrinsically distinct as they are actually different

types of communities (e.g. friend circles vs. work groups). This argument is based on

our observation of real-world multiplex networks.

Consider, for example, the Aarhus Computer Science Department Network (AUCS)[71],

which is an unweighted and undirected five-dimensional multiplex network representing

interactions between employees of the computer science department at Aarhus University

in Aarhus, Denmark. It consists of 61 employees (administrative staff, faculty, research

associates, Ph.D. students, and postdocs) belonging to eight work groups. The five inter-

action dimensions are lunch (1), Facebook (2), co-authors (3), leisure (4) and work (5). A

community partition found for all the layers by MDLPA algorithm [43] is shown in Figure

3-1. Although the community structures identified correspond well to the ground-truth

work groups, it is easy for us to find that edges in the first dimension dominate intra-

community connection for all work groups. Meanwhile, the second dimension accounts

for the majority of inter-community connection. This finding suggests that while the un-

derlying community structure for the first layer may be highly correlated to real-world

work groups, it is not the case for second layer. Actually, the second layer (Facebook in-

teraction) may encode friendship relations that are independent of work-based relations.
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This observation is consistent with our argument that different layers have different com-

munity structures. On the other hand, we also note that nodes do share some common

features across different dimensions. For example, consider two specific nodes, U141

and U92 in the work group colored by yellow. U141 is only connected to three other

nodes U48, U92 and U68, and only in the first dimension, which may indicate that he or

she is a new-comer or a taciturn individual who avoids socializing with others. U92, on

the contrary, is connected to 7 nodes in first dimension, which may indicate that he or she

is more out-going. And this characteristic is also reflected in other dimensions as U92 is

also connected to other nodes in the second, fourth and fifth dimension.
Mining Community Structures in Multidimensional Networks 51:27

Fig. 12. Performance results on the Aarhus computer science department network with respect to the
presumed latent community structure.

and SC-ML. The results of MDLPA, PMM, and SC-ML suggest that, in general, the
identified community structures are not much different from the original workgroups
of the employees. Although PMM and SC-ML achieve higher results when provided
the number of communities, MDLPA can systematically identify the latent community
structure without any additional information. Our algorithm automatically identifies
communities within each of which nodes are well connected across different subsets of
dimensions. For instance, referring back to Figure 11, community C6 corresponds to the
workgroup G6 while community C1 corresponds to workgroup G1 with the exception of
node U17 which originally belongs with workgroup G5. We noticed that MDLPA assigns
U17 to G1 instead of its original workgroup G5, because it socializes and works more
frequently with members of G1, making its contribution of links much higher than if
it were to join G5. The same observation remains valid for nodes unassigned to their
original workgroups, as it is the case, for example, with G3 and G4 (C3 and C4, respec-
tively) which “lost” some members in favor of larger workgroups G2 and G7 (C2 and
C7, respectively). Besides, the selected relevant dimensions offer an additional insight
about the main drivers of interaction within communities. For instance, members of
G1 coauthor papers less often and completely avoid interactions in Facebook. The same
goes for G6’s members who tend to avoid direct contact on Facebook. In contrast, the

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 4, Article 51, Publication date: June 2017.

Figure 3-1 The community structures (indicated by different colors) of the Aarhus computer science

department network as identified by MDLPA [43]. Numbers on edges designate dimension

IDs.

Based on our observation, we propose a different and more realistic objective for

multiplex community detection, i.e. finding distinct community partitions for each layer

of a multiplex network, while exploiting the common features of nodes in different lay-

ers (i.e. transferred knowledge). We will formally define this objective in the following

subsection.
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3.1.2 Formulation

We borrow the notations of multiplex community detection from Chapter 1 except

for the community part. Instead of finding a community partition C = {𝐶1, ...,𝐶𝑘𝑐𝑜𝑚}
for all the layers, we aim to find a distinct community partition for each layer, i.e. C𝐾 =

{𝐶𝐾1, ...,𝐶𝐾𝑘𝑐𝑜𝑚𝐾
} for 𝐾th layer, where 𝑘𝑐𝑜𝑚𝐾

is the number of communities to be

found in 𝐾th layer. Unlike monoplex methods which find the community partition C𝐾

with topological features only in 𝐾th layer (i.e. layer-specific features), we hope to make

use of those from other layers as well (i.e. common features). Formally, we define our

problem as follows.

Problem 3.1 Given a 𝑁 -layer multiplex network 𝐺(𝑉,𝐸1, ...,𝐸𝑁 ) with adjacency matri-

ces A1, ...,A𝑁 , find distinct community partitions in each layer, C1, ...,C𝑁 , so that both

common features and layer-specific features of nodes are exploited.

Note that this definition of our problem is in the multi-task learning setting, as the

community partition results of all layers are found simultaneously. In reality, only some

layer may be of interest, which leads to the following definition of our problem in the

transfer learning setting,

Problem 3.2 Given a 𝑁 -layer multiplex network 𝐺(𝑉,𝐸1, ...,𝐸𝑁 ) with adjacency ma-

trices A1, ...,A𝑁 , find distinct community partition in some layer 𝐾 ′, C𝐾′ , so that both

transferred knowledge from other layers and layer-specific features of 𝐾 ′th layer are

exploited.

In the following section when we develop our framework, we shall see that it can

accommodate both settings of the problem, with little modification.

3.2 Algorithm

3.2.1 Framework

Since we are the first to define the objective of multiplex community detection as

to finding a community partition for some layer with transferred knowledge from other

layers, we can’t use multiplex community detection techniques introduced in Chapter 1.
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𝐔1

𝐔2

⋮
𝐔𝑁−1

𝐔𝑁

Learning Representations

[𝐗 𝐁1]
[𝐗 𝐁2]

⋮
[𝐗 𝐁𝑁−1]
[𝐗 𝐁𝑁]

⋮

C1
C2
⋮

C𝑁−1
C𝑁

Clustering Representations

Figure 3-2 Framework of our algorithm. U1, ...,U𝑁 are the utility matrix of each layer, X is the com-

mon feature matrix shared by all layers, B1, ...,B𝑁 are the layer-specific feature matrices,

and C1, ...,C𝑁 are the found community partitions for each layer.

Here, we consider extending the representation-based community detection methods in

Chapter 2 by incorporating shared features. Our framework is illustrated in Figure 3-2.

Unlike previous representation-based community detection methods which work on

monoplex networks and only learn a latent representation for each layer separately, our

framework takes the utility matrices U1, ...,U𝑁 of all layers as input and collectively

finds a common feature matrix X (X ∈ R𝑛×𝑐, where 𝑐 is the number of dimensions of

common features), along with layer-specific feature matrices B1, ...,B𝑁 (B𝐾 ∈ R𝑛×𝑐𝐾 ,

where 𝑐𝐾 is the number of dimensions of layer-specific features of 𝐾th layer). X and

B𝐾 then collectively form the combined feature matrix [X B𝐾 ] for 𝐾th layer. In this

way, the combined feature matrix for each layer incorporates shared features, or trans-

ferred knowledge from other layers, which can help improve the community detection

results. Once the latent representations [X B1], ..., [X B𝑁 ] are learned, we can apply

clustering algorithms on the latent representation of each layer separately. And the com-

munity partition for each layer is the result of the clustering algorithm. We summarize

our framework of transfer learning for multiplex community detection in Algorithm 1.

Note that our framework in Figure 3-2 and Algorithm 1 solve the problem in the

multi-task learning setting. To accommodate it to the transfer learning setting, we apply

the representation clustering algorithm to the target layer 𝐾 ′ only, instead of all the layers,

while keeping our representation learning process unchanged.

To implement our framework, the representation learning method and the represen-

tation clustering method must be specified. In the following subsections, we will intro-
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duce a possible implementation of these methods. However, it is noteworthy that our

framework can easily accommodate different sets of learning and clustering methods.

Algorithm 1 Our Framework of Transfer Learning for Multiplex Community Detection
Input: Utility matrices of a 𝑁 -layers multiplex network U1, ...,U𝑁

Output: Community partitions for each layer C1, ...,C𝑁

1: X,B1, ...,B𝑁 ← learn representation(U1, ...,U𝑁 )

2: for 𝐾← 1 to 𝑁 do

3: C𝐾 ← cluster representation(X,B𝐾)

4: end for

5: return C1, ...,C𝑁

3.2.2 Learning Representations

While in Chapter 2 several different types of representation learning methods are

available for monoplex networks, none of them are directly applicable to our problem

since they only deal with monoplex networks. Here, we consider extending the stochastic

model in Section 2.2, which is formulated as a symmetric non-negative matrix factoriza-

tion problem.

The utility matrices U1, ...,U𝑁 are the adjacency matrices A1, ...,A𝑁 as in the

stochastic model. For each layer 𝐾, our objective is to find the combined feature matrix

[X B𝐾 ] that best reconstructs the original adjacency matrix A𝐾 . Adopting the square

loss function to quantify the reconstruction error, we have

𝐿𝐾 = ||A𝐾− [X B𝐾 ][X B𝐾 ]𝑇 ||2𝐹 = ||A𝐾−XX𝑇 −B𝐾B𝑇
𝐾 ||2𝐹 (3-1)

for 𝐾th layer. Note that if we minimize 𝐿𝐾 separately for each layer,

min
X>0,B𝐾>0

𝐿𝐾 = ||A𝐾−XX𝑇 −B𝐾B𝑇
𝐾 ||2𝐹 (3-2)

then this formulation reduces to monoplex stochastic model and [X B𝐾 ] is the latent

feature matrix H. Since we want to transfer knowledge from other layers through the

common feature matrix X to help improve the latent representations, we simultaneously

minimize the reconstruction error of all layers,

min
X>0,B1,...,B𝑁>0

𝐿=
𝑁∑︁

𝐾=1

𝑤𝐾 ||A𝐾−XX𝑇 −B𝐾B𝑇
𝐾 ||2𝐹 (3-3)
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where 𝑤𝐾 is the weight for the reconstruction error of 𝐾th layer. If there is no prior

knowledge about which layer should contribute more to the common feature matrix (e.g.

some layer is less noisy), we can simply set all weights to be equal. Then Equation 3-3

reduces to

min
X>0,B1,...,B𝑁>0

𝐿=
𝑁∑︁

𝐾=1

||A𝐾−XX𝑇 −B𝐾B𝑇
𝐾 ||2𝐹 (3-4)

For this optimization problem, we have the following theorem.

Theorem 3.1 The sum of residuals in Equation 3-4, 𝐿, can’t be minimized to zero.

Proof We only need to prove that ||A𝐾 −XX𝑇 −B𝐾B𝑇
𝐾 ||2𝐹 > 0, which is equivalent

to A𝐾 ̸=XX𝑇 +B𝐾 . We prove this by showing that XX𝑇 +B𝐾B𝑇
𝐾 is positive semi-

definite and that A𝐾 is not.

First, for any non-zero vector s ∈ R𝑛×1, we have

s𝑇 (XX𝑇 +B𝐾B𝑇
𝐾)s= s𝑇XX𝑇 s+ s𝑇B𝐾B𝑇

𝐾s

= g𝑇g+h𝑇h

= ||g||2+ ||h||2 > 0 (3-5)

where g =X𝑇 s,h=B𝑇
𝐾s. This shows that XX𝑇 +B𝐾B𝑇

𝐾 is positive semi-definite.

Then, for undirected networks with no self-loops, we have A𝐾 to be symmetric and
𝑛∑︁

𝑖=1

𝜆𝑖 = Tr(AK) =
𝑛∑︁

𝑖=1

A𝐾𝑖𝑖 = 0 (3-6)

where 𝜆1, ...,𝜆𝑛 are the 𝑛 eigenvalues of A𝐾 . Therefore, either there is at least some

𝜆𝑖 < 0 or 𝜆1 = ...= 𝜆𝑛 = 0. However, since A𝐾 is symmetric, 𝜆1 = ...= 𝜆𝑛 = 0 directly

leads to A𝐾 = 0. Thus, 𝜆𝑖 < 0 holds, which means A𝐾 can’t be positive semi-definite.■

Theorem 3.1 states that the reconstruction error can’t be minimized to zero, which

means that it is impossible to perfectly reconstruct the adjacency matrices with the latent

feature matrices.

Now that we have our objective function for learning representations, we need a pro-

cedure to optimize it. While Equation 3-4 resembles the objective function of symmetric

non-negative matrix factorization, it can’t be solved accordingly. Consider the simplest
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case when both X and B𝐾 (𝐾 ̸= 𝐾 ′) are fixed and we want to find the optimal B′
𝐾 .

Then, Equation 3-4 reduces to

min
B𝐾′>0

𝐿𝐾′ = ||A𝐾′−XX𝑇 −B𝐾′B𝑇
𝐾′||2𝐹 (3-7)

However, since A′
𝐾−XX𝑇 > 0 doesn’t always hold, we can’t apply standard symmetric

non-negative matrix factorization procedures (such as [72], [73] and [74]). In the fol-

lowing, we design a new set of alternating multiplicative update rules for optimizing our

objective, based on semi-NMF techniques [75].

We first compute the partial derivatives of our objective function 𝐿 with respect to

X and B𝐾 ,

𝜕𝐿

𝜕X
= 4𝑁XX𝑇X+4

𝑁∑︁
𝐾=1

(B𝐾B𝑇
𝐾−A𝐾)X (3-8)

𝜕𝐿

𝜕B𝐾
= 4B𝐾B𝑇

𝐾B𝐾 +4(XX𝑇 −A𝐾)B𝐾 (3-9)

Since we require both X> 0 and B𝐾 > 0, we introduce the respective multipliers:

Λ ∈ R𝑛×𝑐,Γ𝐾 ∈ R𝑛×𝑐𝐾 ,16𝐾 6𝑁 (3-10)

Then, we have the following Lagrangian:

ℒ(X,B𝐾) = 𝐿−Tr(ΛX𝑇 )−
𝑁∑︁

𝐾=1

Tr(Γ𝐾B𝑇
𝐾) (3-11)

From the stationarity of Karush-Kuhn-Tucker conditions we have
𝜕ℒ
𝜕X

=
𝜕𝐿

𝜕X
−Λ= 0,

𝜕ℒ
𝜕B𝐾

=
𝜕𝐿

𝜕B𝐾
−Γ𝐾 = 0 (3-12)

which leads to

Λ= 4𝑁XX𝑇X+4
𝑁∑︁

𝐾=1

(B𝐾B𝑇
𝐾−A𝐾)X (3-13)

Γ𝐾 = 4B𝐾B𝑇
𝐾B𝐾 +4(XX𝑇 −A𝐾)B𝐾 (3-14)

Then, from the complementary slackness of Karush-Kuhn-Tucker conditions

Λ𝑖𝑗X𝑖𝑗 = 0,Γ𝐾𝑖𝑗B𝐾𝑖𝑗 = 0 (3-15)
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Substituting Equation 3-13 and Equation 3-14 into Equation 3-15, we have

(−
𝑁∑︁

𝐾=1

(A𝐾−B𝐾B𝑇
𝐾)X+𝑁XX𝑇X)𝑖𝑗X𝑖𝑗 = 0 (3-16)

(−(A𝐾−XX𝑇 )B𝐾 +B𝐾B𝑇
𝐾B𝐾)𝑖𝑗B𝐾𝑖𝑗 = 0 (3-17)

Based on Equation 3-16 and Equation 3-17, we design the following update rules for X

and B𝐾 :

X𝑖𝑗 ←X𝑖𝑗

⎯⎸⎸⎷ ((
∑︀𝑁

𝐾=1(A𝐾−B𝐾B𝑇
𝐾))+X)𝑖𝑗

((
∑︀𝑁

𝐾=1(A𝐾−B𝐾B𝑇
𝐾))−X)𝑖𝑗 +(𝑁XX𝑇X)𝑖𝑗

(3-18)

B𝐾𝑖𝑗 ←B𝐾𝑖𝑗

√︃
((A𝐾−XX𝑇 )+B𝐾)𝑖𝑗

((A𝐾−XX𝑇 )−B𝐾)𝑖𝑗 +(B𝐾B𝑇
𝐾B𝐾)𝑖𝑗

(3-19)

where we denote the positive and negative parts of a matrix E as

E+ = (|E|+E)/2 (3-20)

E− = (|E|−E)/2 (3-21)

To minimize our objective, we first initialize X and B1, ...,B𝑁 to matrices with entries

that are uniformly distributed in [0,1]. Then, we alternatingly apply Equation 3-18 to X

and Equation 3-19 to B𝐾 ,16𝐾 6𝑁 until convergence.

For this set of update rules, we have the following theorem.

Theorem 3.2 The limiting solutions of the update rules in Equation 3-18 and Equation

3-19 satisfy Karush-Kuhn-Tucker conditions in Equation 3-16 and Equation 3-17.

Proof We only prove that Equation 3-18 satisfies Equation 3-16 at convergence, and that

Equation 3-19 satisfies Equation 3-17 can be proved in a similar manner.

At convergence, we have X∞ =X𝑡+1 =X𝑡 =X. Then, from Equation 3-18

X𝑖𝑗 =X𝑖𝑗

⎯⎸⎸⎷ ((
∑︀𝑁

𝐾=1(A𝐾−B𝐾B𝑇
𝐾))+X)𝑖𝑗

((
∑︀𝑁

𝐾=1(A𝐾−B𝐾B𝑇
𝐾))−X)𝑖𝑗 +(𝑁XX𝑇X)𝑖𝑗

(3-22)

Square both sides, multiply it by the denominator, and transpose it, we get

(((
𝑁∑︁

𝐾=1

(A𝐾−B𝐾B𝑇
𝐾))

−− (
𝑁∑︁

𝐾=1

(A𝐾−B𝐾B𝑇
𝐾))

+
)X+𝑁XX𝑇X)𝑖𝑗X

2
𝑖𝑗 = 0 (3-23)
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Note that

(
𝑁∑︁

𝐾=1

(A𝐾−B𝐾B𝑇
𝐾))

+− (
𝑁∑︁

𝐾=1

(A𝐾−B𝐾B𝑇
𝐾))

−
=

𝑁∑︁
𝐾=1

(A𝐾−B𝐾B𝑇
𝐾) (3-24)

Therefore, Equation 3-23 reduces to

(−
𝑁∑︁

𝐾=1

(A𝐾−B𝐾B𝑇
𝐾)X+𝑁XX𝑇X)𝑖𝑗X

2
𝑖𝑗 = 0 (3-25)

Equation 3-25 is equivalent to Equation 3-16, the respective Karush-Kuhn-Tucker condi-

tion, since both require either the first term (−∑︀𝑁
𝐾=1(A𝐾 −B𝐾B𝑇

𝐾)X+𝑁XX𝑇X)𝑖𝑗

to be zero or the second terms X𝑖𝑗 , X2
𝑖𝑗 to be zero. ■

Theorem 3.2 indicates that if our algorithm converges, then its solution converges to

a Karush-Kuhn-Tucker stationary point. In the next section, we will empirically show that

under this set of alternating multiplicative rules, the reconstruction error converges at a

fast rate. Therefore, in our implementation, we only need to set a maximum number

of iterations 𝑇 , after which our algorithm stops. In general, our algorithm produces

relatively stable outputs, independent of network size and other properties, when 𝑇 is

greater than 20.

Algorithm 2 learn representation(A1, ...,AN)

Input: Adjacency matrices of a 𝑁 -layers multiplex network A1, ...,A𝑁

Output: A common feature matrix X and layer-specific feature matrices B1, ...,B𝑁

1: X𝑖𝑗 ,B1𝑖𝑗 , ...,B𝑁𝑖𝑗 ← rand([0,1])

2: for 𝑡= 1→ 𝑇 do

3: X𝑖𝑗 ←X𝑖𝑗

√︂
((
∑︀𝑁

𝐾=1(A𝐾−B𝐾B𝑇
𝐾))

+
X)𝑖𝑗

((
∑︀𝑁

𝐾=1(A𝐾−B𝐾B𝑇
𝐾))

−
X)𝑖𝑗+(𝑁XX𝑇X)𝑖𝑗

4: for 𝐾 = 1→𝑁 do

5: B𝐾𝑖𝑗 ←B𝐾𝑖𝑗

√︂
((A𝐾−XX𝑇 )

+
B𝐾)𝑖𝑗

((A𝐾−XX𝑇 )
−
B𝐾)𝑖𝑗+(B𝐾B𝑇

𝐾B𝐾)𝑖𝑗

6: end for

7: end for

8: return X, B1, ...,B𝑁

We summarize our representation learning algorithm in Algorithm 2. The complex-

ity of Algorithm 2 can be analyzed in a quite straightforward manner. The update rule of

X in Line 3 requires 𝑂(𝑁𝑛2(𝑐+max(𝑐1, ..., 𝑐𝑁 ))) operations by schoolbook matrix mul-

tiplication. For each B𝐾 , the update rule in Line 5 requires 𝑂(𝑛2(𝑐+ 𝑐𝐾)) operations.
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Then, to update all the B𝐾 ,1 6 𝐾 6 𝑁 , 𝑂(𝑁𝑛2(𝑐+max(𝑐1, ..., 𝑐𝑁 ))) operations are

required. Therefore, for a total of 𝑇 iterations, Algorithm 2 has a computational cost of

𝑂(𝑁𝑇𝑛2(𝑐+max(𝑐1, ..., 𝑐𝑁 ))). For most real-world networks, 𝑁,𝑐,𝑐𝐾≪ 𝑛 and 𝑇 ∼ 20,

and our representation learning algorithm runs in 𝑂(𝑛2).

3.2.3 Clustering Representations

After the latent representations are learned, any standard clustering algorithm can

handle the task of clustering representations, as they are in feature vector form. Therefore,

in our implementation, we simply apply k-means algorithm for clustering.

The representation clustering algorithm is shown in Algorithm 3. Since it directly

uses k-means, its complexity is 𝑂(𝑇 ′𝑛𝑑𝑘𝑐𝑜𝑚), where 𝑇 ′ is the number of iterations un-

til k-means convergence (𝑇 ′ ∼ 100), 𝑑 = 𝑐+ 𝑐′𝐾 ≪ 𝑛 is the number of columns of the

combined feature matrix [X B𝐾′ ], 𝑘𝑐𝑜𝑚≪ 𝑛 is the number of communities to be found.

Therefore, the representation clustering algorithm runs in 𝑂(𝑛).

Algorithm 3 cluster representation(X,B𝐾)

Input: The common feature matrix X and the layer-specific feature matrix B𝐾 of 𝐾th

layer.

Output: The community partition for 𝐾th layer C𝐾 .

1: C𝐾 ← k-means([X B𝐾 ])

2: return C𝐾

3.3 Experiment

In this section, we will introduce our experiment setup for evaluating our algorithm

and comparing it with monoplex methods.

3.3.1 Dataset

Unlike monoplex network, of which both synthetic benchmark datasets (e.g. Girvan-

Newman [23] and Lancichinetti-Fortunato-Radicchi [76]) and large real-world dataset

repositories (e.g. Stanford Network Analysis ProjectÀ and UC Irvine Network Data Repos-

itoryÁ) are readily available to the community, only a few real-world multiplex networks

À http://snap.stanford.edu/data/index.html

Á https://networkdata.ics.uci.edu/
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are well recorded. We collect six small(∼ 100 nodes) to medium (∼ 10,000 nodes) multi-

plex networks for our evaluation purposes as our algorithm (𝑂(𝑛2)) can’t deal with large

networks (∼ 1,000,000 nodes) in a short time. Despite this, we also list some large mul-

tiplex networks in this subsection for other possible implementations of our framework,

which may be better scalable (∼𝑂(𝑛)).

∙AUCS [71]. As introduced in Subsection 3.1.1, Aarhus Computer Science Depart-

ment Network (AUCS) is an unweighted five-dimensional multiplex network. Each

layer represents one type of interaction between the employees of the computer sci-

ence department at the Aarhus University: lunch, Facebook, co-authors, leisure and

work. It has 61 nodes and 620 edges. It is available at http://multilayer.it.

uu.se/datasets.html.

∙Seventhgrade [77]. Seventhgrade is an unweighted three-dimensional social net-

work. It is derived from surveying a class of seventh grade students in a school in

Victoria, Australia. The three layers record students’ answer to the following ques-

tions: 1. Who do you get on with in the class? 2. Who are your best friends in the

class? and 3. Who would you prefer to work with? It has 29 nodes and 740 edges.

It is available at http://deim.urv.cat/~manlio.dedomenico/data.php.

∙Physician [78]. Physician is an unweighted three-dimensional social network.

It is concerned with the impact of network ties on the physicians’ adoption of a

new drug, tetracycline in Illinois, Peoria, Bloomington, Quincy and Galesburg, the

United States. The three layers record physician’ answers to the following ques-

tions: 1. When you need information or advice about questions of therapy where

do you usually turn? 2. Who are the three or four physicians with whom you most

often find yourself discussing cases or therapy in the course of an ordinary week,

last week for instance? and 3. Would you tell me the first names of your three

friends whom you see most often socially? It has 246 nodes and 1,551 edges. It is

available at http://deim.urv.cat/~manlio.dedomenico/data.php.

∙Bos [79, 80]. This unweighted four-dimensional biological network is derived

from the Biological General Repository for Interaction Datasets (BioGRIDÀ). It

encodes the genetic and protein interactions of Bos Linnaeus. The four dimen-

sions represent physical association, association, direct interaction and coloniza-

À https://thebiogrid.org/
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tion, respectively. It has 321 nodes and 325 edges. In our experiment, we only

keep the first and third layers as the other two layers are too sparse (containing 9

and 3 edges, respectively). This dataset is available at http://deim.urv.cat/

~manlio.dedomenico/data.php.

∙Celegans [81, 82]. Celegans is an unweighted three-dimensional biological net-

work which represents neuronal network of the nematode Caenorhabditis elegans.

The three layers corresponds to three different types of synaptic junction: elec-

tric junction, chemical monadic junction and chemical polyadic junction. It has

279 nodes and 5,863 edges. It is available at http://deim.urv.cat/~manlio.

dedomenico/data.php

∙ff-tw-yt [83]. ff-tw-yt is an unweighted three-dimensional online social network.

It has been obtained starting from Friendfeed, a social media aggregator. Users of

Friendfeed comment on other messages much like in Facebook, which forms the

first layer of the network. The second layer and third layer represent Twitter and

YouTube interaction of the same set of users with associated accounts respectively.

It has 6,407 nodes and 74,862 edges. It is available at http://multilayer.it.

uu.se/datasets.html.

We also list three large networks for evaluating other possible implementations of

our framework.

∙Biogrid [84]. This two-dimensional biological network is based on protein in-

teractions in the BioGRID dataset. The two layers represent physical and genetic

interactions between proteins, respectively. It has 54,549 nodes and 503,049 edges.

It is available at http://www.maths.qmul.ac.uk/~vnicosia/sw.html.

∙ff-tw [83]. Similar to ff-tw-yt, this network only records interaction of users who

have associated accounts in Friendfeed and Twitter, which allows a much bigger

size than ff-tw-yt. It has 155,804 nodes and 13,657,550 edges. It is available at

http://multilayer.it.uu.se/datasets.html.

∙Aminer [85]. Aminer itself is a collection of research papers, author informa-

tion and co-authorship of the academic community. A two-dimensional academic

network can be derived from the raw data. The nodes of the network are the schol-

ars and the two types of connections represent co-authorship, where two scholars

are connected if they co-author a paper, and citationship, where two scholars are
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connected if one’s paper cites the other’s. This derived network has 1,712,433

nodes and 42,272,409 edges. The raw data is available at https://aminer.org/

aminernetwork.

For all the datasets used in our experiments, we do the following pre-processing

procedures:

1.Make its adjacency matrices symmetric by adding a returning edge for every ex-

isting edge. Any directed layer becomes undirected after this procedure.

2.Set the main diagonal entries of the adjacency matrices to zero. This removes all

self-loops in the network.

3.3.2 Metric

Since our objective is to improve community detection performance in some layer

with transferred knowledge from other layers, we only need evaluation metrics for the

monoplex network, instead of multiplex network. For monoplex network, two types of

quality functions are most widely accepted.

∙Normalized Mutual Information (NMI) [86]. Normalized mutual information is

a measure of similarity of partitions borrowed from information theory, which has

proved to be reliable [87]. It evaluates the community detection results by calculat-

ing the correspondence from the obtained partition C to the reference partition C′,

which is often derived from ground truth. The NMI is defined as follows,

NMI(C,C′) =
2𝐼(C,C′)

𝐻(C)+𝐻(C′)
(3-26)

where 𝐼(C,C′) =𝐻(C)−𝐻(C|C′) is the mutual information between C and C′, 𝐻(C)

and 𝐻(C′) are the Shannon entropy of C and C′ respectively, and 𝐻(C|C′) is the con-

ditional entropy of C given C′. NMI ranges in [0,1], with NMI = 1 indicating that

the reference partition and the obtained partition are identical. However, as an in-

ternal criterion, NMI requires that we know exactly how the underlying community

partition is, which is available for many monoplex networks but very few multiplex

networks. That is because even when some ground-truth community partitions are

available in some multiplex networks (e.g. work group information is available for

AUCS), we can’t decide which layer these community structures correspond to.
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Therefore, we must resort to external criteria for evaluating our results, the most

widely accepted one of which is introduced below.

∙Modularity [35]. As an external criterion to assess the community detection effec-

tiveness, modularity can be computed from the obtained community partition along

with network topological information, in the absence of ground truth. It measures

how far the network interactions deviate from random connections, and is defined

as follows,

𝑄=
1

2𝑚

∑︁
𝐶∈C

∑︁
𝑖∈𝐶,𝑗∈𝐶

(𝐴𝑖𝑗−
𝑘𝑖𝑘𝑗
2𝑚

) (3-27)

where A𝑖𝑗 is the actual connection between a pair of nodes 𝑖, 𝑗 in the same com-

munity 𝐶, 𝑘𝑖𝑘𝑗
2𝑚 is the expected number of edges between 𝑖 and 𝑗 if edges are placed

randomly, the coefficient 1
2𝑚 is introduced to normalize the modularity value into

[−1,1]. For modularity, large value indicates more deviation from the random

graph, and thus better community partition.

In our experiments, we use modularity to evaluate our community detection results.

3.3.3 Baseline

To illustrate the effect of the transferred knowledge that our algorithm exploits, we

compare our results with other monoplex non-negative matrix factorization-based meth-

ods. Specifically, we consider two implementations of symmetric non-negative matrix

factorization approaches.

∙Coordinate Descent (CD) [88]. This algorithm directly solves the symmetric

non-negative matrix factorization, a fourth-order nonconvex problem, by solving

a series of fourth-order univariate subproblems exactly with efficient coordinate

descent schemes. The algorithm is proved to converge and can be performed in

𝑂(𝑟max(𝑆,𝑛𝑟)𝑇 ), where 𝑛 is the number of columns of the original matrix, 𝑟 is

the number of columns of factorized matrix, 𝑆 is the number of nonzero entries

in the original matrix, and 𝑇 is the number of iterations. Their implementation is

available at https://sites.google.com/site/nicolasgillis/code.

∙Newton [74]. This algorithm takes a Newton-like strategy, with several improve-

ments compared to the original projected Newton method. The improved algorithm
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is guaranteed to converge, and can be performed in 𝑂(𝑛3𝑟𝑇 ), where 𝑛 is the num-

ber of columns of the original matrix, 𝑟 is the number of columns of factorized

matrix, and 𝑇 is the number of iterations. Their implementation is available at

https://github.com/dakuang/symnmf.

Adjacency matrix of the target layer is factorized by these monoplex symmetric

non-negative matrix factorization methods to obtain the latent feature matrix. Then, the

representations learned are clustered by k-means, the same clustering algorithm our im-

plementation uses, to obtain the community partition for the target layer.

3.3.4 Parameters

Our algorithm requires several parameters to work properly. We discuss our choices

and present our explanations as follows.

∙Target layer 𝐾 ′. Considering the effect of ‘negative transfer’, where the trans-

ferred knowledge contributed to reduced performance [56], not all layers can achieve

improved performance through our algorithm. Basically, sparse layers witness

more improved performance as some edges may not reveal themselves in the ob-

served network data. Therefore, we generally choose the most sparse layer of the

multiplex network as the target layer to receive the transferred knowledge. For

AUCS, we choose the third layer (Facebook), for Seventhgrade, third layer (work

with), for Physician, first layer (ask for advice), for Bos, second layer (direct inter-

action), for Celegans, second layer (chemical monadic junction), and for ff-tw-yt,

first layer (YouTube).

∙Number of communities to be detected in the target layer 𝑘𝑐𝑜𝑚. Since there is

hardly any ground truth about the test datasets, we can only choose this parameter

empirically. We run our algorithm with several different number of communities

and keep those with largest modularity. For the test datasets, we choose 10 as

the number of communities for target layer of AUCS, 3 for Seventhgrade, 4 for

Physician, 10 for Bos, 10 for Celegans and 1000 for ff-tw-yt.

∙Latent feature dimensions 𝑐,𝑐𝐾 . The number of dimensions of latent feature

matrices are much less than that of the original utility matrix, which is usually quite

sparse. Generally, we select smaller dimensions of layer-specific feature matrices

for sparser layers since there is less information to encode, and the number of
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dimensions for common feature matrix is usually similar to the minimum of those

for layer-specific feature matrices. Common feature matrix dimensions and layer-

specific feature matrix dimensions are 2 and [1,1,1,1,1] for AUCS, 2 and [2,2,2]

for Seventhgrade, 2 and [2,1,1] for Physician, 2 and [2,1] for Bos, 1 and [1,2,5] for

Celegans and 1 and [1,9,13] for ff-tw-yt.

∙Numbers of iterations 𝑇,𝑇 ′. Since both our learning algorithm and clustering al-

gorithm converge fast and produce stable output regardless of input network data,

we choose fixed numbers of iterations for both algorithms. For the representation

learning algorithm, we choose 𝑇 = 20, and for the representation clustering algo-

rithm, we choose 𝑇 ′ = 100.

For the baseline algorithms, we use 𝑟 = 𝑐+ 𝑐𝐾 for the number of columns in latent

matrix of 𝐾th layer, which guarantees same learning power as our algorithm. We use

default options provided by their authors for choices of other parameters.

3.3.5 Environment

Our algorithm is implemented in MATLAB, as well as the two baseline methods.

All experiments are conducted in MATLAB 9.0.0.341360 (R2016a), running on a laptop

with Intel i7-4710MQ CPU and 8GB RAM.

3.4 Results

3.4.1 Convergence Analysis

We run our algorithm on the six test datasets. The decrease of reconstruction error

(i.e. value of the objective function) as the number of iterations increase is shown in

Figure 3-3. Note that the reconstruction error in all figures is drawn in logarithmic scale

for better illustration.

As is quite obvious in these figures, the reconstruction error drops sharply after

the first iteration, because the latent feature matrices are randomly initialized. After the

second iteration, however, the error decreases slowly but also steadily as the number of

iterations increase, and reaches to a relative stable value before 20 iterations. As previous

proved in Theorem 3.2, the solution converges to a Karush-Kuhn-Tucker stationary point
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Figure 3-3 Relationship between reconstruction error and number of iterations for the

test datasets.(a)AUCS;(b)Seventhgrade;(c)Physician;(d)Bos;(e)Celegans;(f)ff-

tw-yt
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if it converges. Combining it with our empirical results, we can say that the solution of

our learning algorithm practically converges to a Karush-Kuhn-Tucker stationary point.

Also note that the reconstruction error can’t decrease to zero, which has also been proved

in Theorem 3.1.

3.4.2 Comparative Analysis

We now compare the community detection performance of our algorithm (Multi-

plex) with other representation-based monoplex methods (Monoplex-CD and Monoplex-

Newton). For ff-tw-yt dataset, we run each algorithm 100 times and compute the mean

and the standard error of modularity of the result partition for comparison. For other

datasets, we run each algorithm 10,000 times. The results are summarized in Table 3-1

and illustrated in Figure 3-4.
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Figure 3-4 Comparison of community detection performance in terms of modualrity. Error bars depict

standard errors.

For all the test datasets, we can see that our multiplex algorithm outperforms the

monoplex algorithms. This is expected as our algorithm make use of transferred knowl-
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Table 3-1 Community detection performance of different algorithms

AUCS Seventhgrade Physician Bos Celegans ff-tw-yt

Multiplex 0.317±0.096 0.161±0.030 0.390±0.066 0.251±0.040 0.154±0.024 0.241±0.023

Monoplex-CD 0.310±0.065 0.159±0.027 0.389±0.065 0.232±0.031 0.146±0.018 0.183±0.012

Monoplex-Newton 0.297±0.051 0.160±0.028 0.385±0.065 0.229±0.030 0.149±0.021 0.172±0.017

edge from other layers of the network through the common feature matrix, while the

monoplex methods only have access to the topological features of that layer. The supe-

riority of our algorithm is most prominent for the ff-tw-yt dataset (0.241 vs. 0.183 &

0.172), where the level of sparsity between layers is most significant (592 vs. 31921 &

42324). This means our algorithm is especially effective when the target layer is noisy

(e.g. large number of missing links). We will further verify this property in the next

subsection.

3.4.3 Noisy Condition Analysis

To further investigate the performance of our algorithm under noisy conditions, we

randomly remove a set of edges from the target layer. The proportion of removed edges

ranges from [0,0.5], with 0.05 as the step length. For each step, we randomly generate

100 adjacency matrices that have the indicated proportion of edges removed. For each ad-

jacency matrix, we run the algorithms 100 times and compute the mean and the standard

error of modularity. Note that when computing modularity, we use the original network

information instead of that with edges removed, because the original topological features

are more consistent with the underlying community structure, given no prior knowledge.

We run the algorithms on the AUCS, Seventhgrade, Physician and Bos datasets and the

results with comparison to the monoplex methods are shown in Figure 3-5. We also com-

pute the proportion of performance retained when 50% edges are removed for the three

algorithms in Table 3-2, Table 3-3 and Table 3-4, respectively.
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Figure 3-5 Community detection performance in terms of modularity in noisy condi-

tions.(a)AUCS;(b)Seventhgrade;(c)Physician;(d)Bos

For all the datasets tested, our algorithm outperforms the other two monoplex meth-

ods in all noisy conditions. For the AUCS, Seventhgrade and Physician datasets, the

performance of our algorithm decreases at a much slower rate than monoplex methods.

For the Bos dataset, while our performance decrease at a similar rate to the monoplex

methods, a constant performance gap is witnessed. Both cases indicate that our algo-

rithm is far more robust in noisy conditions, as topological information can be retrieved

from other layers through the common feature matrix. Specifically, when the noise level

is high, e.g. when 50% edges are removed, our algorithm can still retain an remarkable

level of performance, as high as 83.7% (in AUCS) and at least 63.7% (in Bos) of its orig-

inal performance. By comparison, monoplex methods can only retain approximately half
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of its performance, which is expected as half of the edges are removed.

Table 3-2 Retained Community Detection Performance in Noisy Condition (Multiplex)

AUCS Seventhgrade Physician Bos

No Noise 0.317±0.096 0.161±0.030 0.390±0.066 0.251±0.040

50% Edges Removed 0.265±0.097 0.125±0.044 0.277±0.064 0.160±0.040

Retained Performance 83.7% 77.7% 71.1% 63.7%

Table 3-3 Retained Community Detection Performance in Noisy Condition (Monoplex-CD)

AUCS Seventhgrade Physician Bos

No Noise 0.310±0.065 0.159±0.027 0.389±0.065 0.232±0.031

50% Edges Removed 0.208±0.072 0.080±0.040 0.183±0.047 0.127±0.029

Retained Performance 67.0% 49.9% 47.0% 54.6%

Table 3-4 Retained Community Detection Performance in Noisy Condition (Monoplex-Newton)

AUCS Seventhgrade Physician Bos

No Noise 0.297±0.051 0.160±0.028 0.385±0.065 0.229±0.030

50% Edges Removed 0.265±0.079 0.079±0.040 0.184±0.046 0.128±0.026

Retained Performance 64.6% 49.0% 47.8% 55.8%
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Chapter 4 Conclusion

4.1 Summary

In this thesis, we define a novel objective for the multiplex community detection

problem. The goal is to refine community detection results in some layer of a multiplex

network with transferred knowledge from other layers. We achieve this goal with an ex-

tended representation-based community detection framework, which first learns a shared

common feature representation and layer-specific feature representations simultaneously

and then cluster the combined representations to obtain the community partition. An im-

plementation of our framework, which includes an extended symmetric non-negative ma-

trix factorization approach for learning representations and k-means for clustering repre-

sentations, is provided and compared with other representation-based monoplex commu-

nity detection algorithms on several real-world multiplex network datasets. Results show

that our implementation outperforms other methods in terms of modularity, especially

when the target layer that receives transferred knowledge is noisy (e.g. much sparser than

other layers). We further evaluate our algorithm in high-level noisy conditions by ran-

domly removing a set of edges in the target layer. It is shown that our algorithm is very

robust against noise, retaining as high as 83.7% of its original performance even when

half of the edges are removed, while other methods can only retain about 50%.

4.2 Future Work

Future research can consider other implementations of the learning and clustering

algorithms for more efficiency and accuracy, as well as ability to handle other types of

network (e.g. directed and weighted network, temporal network, heterogeneous network,

etc). Another interesting direction is to deal with ‘negative transfer’ in the community

detection context.
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We consider the problem of detecting communities or modules in networks, groups of vertices with a
higher-than-average density of edges connecting them. Previous work indicates that a robust approach to this
problem is the maximization of the benefit function known as “modularity” over possible divisions of a
network. Here we show that this maximization process can be written in terms of the eigenspectrum of a matrix
we call the modularity matrix, which plays a role in community detection similar to that played by the graph
Laplacian in graph partitioning calculations. This result leads us to a number of possible algorithms for
detecting community structure, as well as several other results, including a spectral measure of bipartite
structure in networks and a centrality measure that identifies vertices that occupy central positions within the
communities to which they belong. The algorithms and measures proposed are illustrated with applications to
a variety of real-world complex networks.
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I. INTRODUCTION

Networks have attracted considerable recent attention in
physics and other fields as a foundation for the mathematical
representation of a variety of complex systems, including
biological and social systems, the Internet, the worldwide
web, and many others �1–4�. A common feature of many
networks is “community structure,” the tendency for vertices
to divide into groups, with dense connections within groups
and only sparser connections between them �5,6�. Social net-
works �5�, biochemical networks �7–9�, and information net-
works such as the web �10� have all been shown to possess
strong community structure, a finding that has substantial
practical implications for our understanding of the systems
these networks represent. Communities are of interest be-
cause they often correspond to functional units such as
cycles or pathways in metabolic networks �8,9,11� or collec-
tions of pages on a single topic on the web �10�, but their
influence reaches further than this. A number of recent re-
sults suggest that networks can have properties at the com-
munity level that are quite different from their properties at
the level of the entire network, so that analyses that focus on
whole networks and ignore community structure may miss
many interesting features.

For instance, in some social networks one finds individu-
als with different mean numbers of contacts in different
groups; the individuals in one group might be gregarious,
having many contacts with others, while the individuals in
another group might be more reticent. An example of this
behavior is seen in networks of sexual contacts, where sepa-
rate communities of high- and low-activity individuals have
been observed �12,13�. If one were to characterize such a
network by quoting only a single figure for the average num-
ber of contacts an individual has, one would be missing fea-
tures of the network directly relevant to questions of scien-
tific interest such as epidemiological dynamics �14�.

It has also been shown that vertices’ positions within
communities can affect the role or function they assume. In
social networks, for example, it has long been accepted that
individuals who lie on the boundaries of communities,

bridging gaps between otherwise unconnected people, enjoy
an unusual level of influence as the gatekeepers of informa-
tion flow between groups �15–17�. A surprisingly similar re-
sult is found in metabolic networks, where metabolites that
straddle the boundaries between modules show particular
persistence across species �8�. This finding might indicate
that modules in metabolic networks possess some degree of
functional independence within the cell, allowing vertices
central to a module to change or disappear with relatively
little effect on the rest of the network, while vertices on the
borders of modules are less able to change without affecting
other aspects of the cellular machinery.

One can also consider the communities in a network
themselves to form a higher-level metanetwork, a coarse-
grained representation of the full network. Such coarse-
grained representations have been used in the past as tools
for visualization and analysis �18� but more recently have
also been investigated as topologically interesting entities in
their own right. In particular, networks of modules appear to
have degree distributions with interesting similarities to but
also some differences from the degree distributions of other
networks �9� and may also display so-called preferential at-
tachment in their formation �19�, indicating the possibility of
distinct dynamical processes taking place at the level of the
modules.

For all of these reasons and others besides there has been
a concerted effort in recent years within the physics commu-
nity and elsewhere to develop mathematical tools and com-
puter algorithms to detect and quantify community structure
in networks. A huge variety of community detection tech-
niques have been developed, based variously on centrality
measures, flow models, random walks, resistor networks, op-
timization, and many other approaches �5,8,9,18,20–35�. For
reviews see Refs. �6,36�.

In this paper we focus on one approach to community
detection that has proven particularly effective, the optimiza-
tion of the benefit function known as “modularity” over
the possible divisions of a network. Methods based on this
approach have been found to produce excellent results
in standardized tests �36,37�. Unfortunately, exhaustive
optimization of the modularity demands an impractically
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利用矩阵特征值发现网络中的社团结构
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本文考虑网络中的社团或者模块检测问题，即发现若干组连接他们之间边的密度高于平均

值的点。之前的工作表明解决这一问题的一个稳健的方法是在可能的网络划分结果上最大化
收益函数“模块度”。本文证明了这种最大化过程可以以我们称为模块度矩阵的特征谱给出，

这种矩阵在社团检测中起的作用与图拉普拉斯矩阵在图划分计算中起的作用类似。这一结果

引出了若干社团检测的可能算法，以及包括一种网络中二分结构的谱度量和说明点在它所属

社团中的中心位置程度的中心度量在内的其他结果。本文提出的算法以及度量方法通过在多

种真实场景的复杂网络的应用进行展示。
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I. 引言

网络作为包括生物系统、社会系统、互联网、万
维网等多种复杂系统的数学表征的基础，近期吸引
了物理界和其他领域的许多关注�1–4�. 对于很多网
络而言，一种常见的特性就是“社团结构”，即网络
中的点有着分成组的趋势，并且组内有着较强的连
接性和组间反之�5,6�。社交网络�5�，生化网络�7–

9�，以及诸如万维网的信息网络�10�都被证明拥有很
强的社团结构，这一发现对理解这些网络所代表的
系统有着巨大的实用意义。人们之所以对社团感兴
趣，是因为其在代谢网络中对应于诸如环和路径这
样的功能单元�8,9,11�，以及万维网中关于同一个话
题的网页的集合�10�，当然社团的影响远不止这

些。多个近期的研究结果表明，网络在社团级别上
有着许多与整个网络级别上不同的性质，因此只注
重于整个网络而忽视社团结构的分析可能会错过许
多有趣的特性。

比如说，在一些社交网络中，人们发现拥有不同
平均联系人数目的个体在不同的团体里面；某个团

体里的个体可能爱社交，因此有着比其他人多的联
系人，而另一个团体的人可能比较含蓄。这种现象
的一个例子是性交网络，在这种网络中人们发现活
动频繁与活动不频繁的个体位于不同的社团中� 
12,13�。如果只通过引用个体的平均联系人数目这

一个数据来刻画这种网络，与诸如流行病动态等具
有科学意义的问题直接相关的网络特征就会被忽视
�14�。

作用或者功能。比如，在社交网络中，一种广为接
受的观点是那些在网络边缘，连接那些没有他们就
没法互相连接的人的个体，作为团体间信息流的看
门人有着超常的影响力�15–17�。一个令人震惊般类

似的结果也在代谢网络中被发现：跨越多个模块边
界的代谢物存在于许多不同物种中�8�。这一结果可

能意味着在代谢网络中，模块在细胞内有着一定程
度上的功能独立性，这让处于模块中心的点的改变
与消失较少地影响网络的其他部分，而在模块边界
上的点则不能在不影响细胞机器的其他方面的情况
下进行改变。

人们也可认为，网络中的社团自身也组成了一个
更高一层的元网络，即一种对整个网络的粗粒度表

征。这种粗粒度表征在过去被用作可视化和分析的
工具�18�，但在最近也作为他们自身被看做拓扑上

有意义的实体而研究。特别地是，模块组成的网络
似乎与其他网络在度分布上有着有趣的类似点但也
有不同之处�9�，并且在他们的形成过程中还展现出
被称为优先连接的特点�19�，这意味着在模块级别

发生着与众不同的动力学过程。

因为上述的所有以及一些其他的原因，近年来在
物理界和其他学术领域，学者们十分努力地开发数
学工具和计算机算法来发现和量化网络中的社团结
构。各种各样的社团检测方法被开发出来：基于中
心度量、流模型、随机行走、电阻网络、最优化等� 
5,8,9,18,20–35�。可以参考�6,36�给出的综述。

许多研究还表明，点在社团中的位置影响他们的
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