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ABSTRACT

ABSTRACT

Community detection in complex networks is one of the most fundamental data
mining tasks. Previous works on multiplex community detection aim to find a commu-
nity partition across several or all layers. Here, based on the observation of real-world
networks, we propose another novel objective for multiplex community detection, that
is, to refine community detection results in some layer with transferred knowledge from
other layers. To solve this new problem, we provide a representation-based multiplex
community detection framework, which first learns a shared common feature representa-
tion and layer-specific feature representations simultaneously and then cluster the com-
bined representations for community partition. The framework is implemented with an
extended symmetric non-negative matrix factorization approach for learning represen-
tations and k-means for clustering representations. This implementation is compared to
other representation-based community detection algorithms on several multiplex network
datasets. Experimental results show that our implementation outperforms other methods
in terms of modularity, especially when the target layer which receives transferred knowl-
edge contains much noise (e.g. sparser than other layers). We further evaluate our algo-
rithm in highly unreliable conditions by randomly removing a set of edges in the target
layer. It is shown that our algorithm is quite robust, retaining as high as 83.7% of its
original performance even when half of the edges are removed, while other methods can

only retain about 50%.

Keywords: complex networks, multiplex community detection, transfer learning, data

mining
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Chapter 1 Introduction

Chapter 1 Introduction

1.1 Background

1.1.1 Network

The modern science of networks has brought significant advances to our understand-
ing of complex systems [1], which spans the natural, social, as well as computer science
and engineering [2—4]. Networks consist of nodes (or vertices) which represent entities,
and edges (or links) that mimick their interactions. Networks can be found in various
real-world contexts. Internet, for example, is the physical network of computers, routers
and modems which are linked via cables or wireless signals. Another famous example is
Facebook®, a large online social network that connects billions of people virtually. Net-
works also find their existence in many other areas, include biology [5], biochemistry [6],
economics [7], ecology [8], epidemiology [9], political science [10], computer science
[11], social science [12], etc.

For decades, network analysis and mining focus on monoplex networks (see Figure
1-1, for example), where all edges represent a single type of interaction between nodes
[13].

The most widely used model of the monoplex network is graph, denoted by G(V, E),
where V' = {v1,v9,...,v, } is the collection of n nodes and E = {(v;,v;)|v; is connected to v; }
is the collection of m edges in the network. For each graph, a corresponding adjacency
matrix A € R™*" records the connection information. In this thesis, we limit our scope
to unweighted and undirected networks that contain no self-loops. For such networks,

the entries of the adjacency matrix are specified by

1 if node 7 and j is connected
Ai]‘: ,1§i,j§n (1-1)
0 otherwise

® https://www.facebook.com/
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Figure 1-1 Lusseau’s network of bottlenose dolphins [14]. Edges connect dolphins which have shown

preferred companionship. This figure is generated by [15].



Chapter 1 Introduction

And because the network is undirected and contains no self-loop, we have
A=A 1<i,j<n&A;;=0,1<i<n (1-2)

The number of edges that are connected to a node ¢ is called the degree of 7, denoted as

k;. We have

n

ki= Aij (1-3)

Jj=1

The degree of nodes of real-world networks usually follows a power law distribution [16],
f(k) ~ k77 (1-4)

where 7y is a parameter whose value is typically in the range 2 < v < 3. Networks having
this property is called scale-free networks [17].

Recently, however, much more efforts have been devoted to analysis of multiplex
networks [18] (or equivalently referred to as multidimensional networks [19] or multi-
layer networks [20]), where the same set of nodes are connected by multiple types of
edges, which allows encoding richer and more complex interactions of real-world dy-
namic systems (see Figure 1-2, for example).

A multiplex network can be represented with several monoplex networks with a
shared set of nodes. Each monoplex network is called a layer of the multiplex network.
A N-layer multiplex network G(V, E1,..., Ex) thus have a set of n nodes and N sets
of edges, each with mg edges, where 1 < K < N. Each layer also has a respective

adjacency matrix A,

1 ifnode 7 and j are connected in K'th layer
Agij= 1<i,j<n,1<K<N

0 otherwise

(1-5)
Degree of nodes is computed for each layer. The degree of node 7 in K'th layer is
n
ki = Z Akij (1-6)
j=1

1.1.2 Community Detection

In real-world networks, a very interesting phenomenon is high concentrations of

connections within special groups of nodes, and low concentrations between these groups,
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Figure 1-2 Indonesian Noordin Top terrorist multiplex network [21]. Edges in each layer represent
exchanged communication, financial involvement, common operations and mutual trust.

This figure is generated by [22].

which is referred to as community structure [23]. A vivid example of community struc-
ture is shown in Figure 1-3. Scientists in the same research area, i.e. community, gener-
ally collaborate more closely, while scientists from different research areas seldom work
together. There are various examples of other community structures in our daily life:
families, work groups, friend circles, universities, nations, to mention a few. In other
networked systems, community structure is also omniscient: group of pages on related
topics in World Wide Web [24, 25], collection of proteins with the same function in pro-
tein interaction networks [26, 27] and functional modules such as cycles and pathways in
metabolic networks [28, 29].

Community detection in networks has various applications. For example, identify-

ing clusters of customers with similar interests in the network of purchase relationships
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Figure 1-3 Collaboration network of scientists working at the Santa Fe Institute. Edges connect scien-

tists who have co-authored at least one paper. Different symbols indicate different research

areas of the scientists. This figure is generated by [23].
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can help online retailers (e.g. Amazon®) set up efficient and effective recommendation
systems [30]. Community detection is also important for social science analysis [31],
handling navigation queries [32], establishing dedicated mirror server [33], etc.

Due to wide applicability of community detection, huge research efforts have been
put into developing effective community detection algorithms. For monoplex networks,
the task is to find a community partition C = {C1,...,Cy,,,. }, where kcop, is the number
of communities in the network and C; = {n;1,...,nig, },1 <@ < kcom is a collection of
nodes which are densely connected to each other, compared to nodes that don’t belong
to this collection. Several measures have been proposed to evaluate community detection
effectiveness, such as normalized cut [34] and modularity [35]. Unfortunately, exactly
optimizing these two metrics is NP-hard, which leads to numerous algorithms to heuris-
tically solve the problem.

Traditional methods for monoplex community detection include graph partitioning
(e.g. Kernighan Lin algorithm [36]) which tries to minimize number of edges between
communities, hierarchical clustering [37] which iteratively merge clusters of nodes if
their similarity is high (agglomerative) or iteratively split cluster of nodes by removing
edges connecting vertices with low similarity (divisive) and partitional clustering (e.g.
k-means [38]) which embeds nodes into a metric space and then minimize the distance
between nodes and their centroids. The number of community detection algorithms is still
growing fast, with representative ones such as modularity optimization [39], Louvain [40]
and Infomap [41].

Unlike community detection in monoplex networks, multiplex community detection
only gains its popularity recently. The objective of multiplex community detection is
often defined as to find a community partition C for all layers of a multiplex network
[42], though some recent work has argued that community structure can be significant
only for a subset of layers [43].

To find community for all layers, several methods have been proposed. A straightfor-
ward idea is to to aggregate all layers and apply monoplex algorithms on the aggregated
network [44]. For example, in binary aggregation, nodes are connected in the aggregated
network if they are connected in any layer of the multiplex network. Frequency-based

aggregation counts the number of connection in all layers and use this number as weight

® https://wuw.amazon.com/
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in the aggregated network. Another approach is ensemble clustering, in which mono-
plex algorithms are applied to each layer of the multiplex network, and later a ensemble
strategy is used to find a consensus across layers [45]. More recently, some extended
versions of monoplex algorithms have sprung up to handle the multiplex problem. [46]
extended the InfoMap algorithm, [47] was based on the Quick algorithm and [48] took an
extended seed-centric approach. Tensor factorization approach [49] can also be viewed

as an extended version of spectral algorithms for monoplex networks.
1.1.3 Transfer Learning

Transfer learning aims to extract the knowledge from one or more source task and
apply the knowledge to a target task. Compared to traditional machine laerning methods
which try to learn each task from scratch, transfer learning techniques try to transfer the
knowledge from some source tasks to a target task (see Figure 1-4). Its application can
be found in classification of web documents[50], sentiment [51] and image [52], WiFi
localization [53], computed aided design [54], name-entity recognition [55], to mention

a few.

Learning Process of Transfer Learning

Learning Process of Traditional Machine Learning

Different Tasks Target Task

Figure 1-4 Different learning processes between traditional machine learning and transfer learning.

This figure is generated by [56].

Depending on whether source and target domains or tasks are the same, transfer
learning can be categorized into three sub-setting [56]. In inductive transfer learning set-
ting, the target task is different from the source task, no matter when the source and target

domains are the same or not. Classical algorithms for inductive transfer learning include
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TrAdaBoost [57], MT-IVM [58] and TAMAR [59]. In the transductive transfer learning
setting, the source and target tasks are the same, while the source and target domains
are different. KMM [60], SCL [61] and MMDE [53] are some widely-used algorithms
for transductive transfer learning. In the unsupervised transfer learning setting, the target
task is different from but related to the source task, and it focuses on unsupervised learn-
ing tasks such as clustering. For unsupervised transfer learning, STC [62] is proposed to
transfer clustering problem and TDA [63] is developed for transfer dimensionality reduc-

tion problem.

1.2 Contribution

The major contributions of our work are fourfold:

1.We propose a novel objective for multiplex community detection, i.e., to refine
community detection results in some layer with transferred knowledge from other
layers, based on our observation of real-world networks. To the best of our knowl-
edge, we are the first to formulate the multiplex community detection problem in
this way.

2.To achieve this new objective, we design a representation-based multiplex commu-
nity detection framework, which first learns a shared common feature representa-
tion and layer-specific feature representations simultaneously and then cluster the
combined representations for community partition. This framework can easily
accommodate to different scenarios by selecting different learning and clustering
algorithms.

3.We provide an implementation of the framework, which includes an extended sym-
metric non-negative matrix factorization approach for learning representations and
k-means for clustering representations. We theoretically prove that under the up-
date rules of our learning algorithm, the solution converges to a Karush-Kuhn-
Tucker stationary point, if it converges.

4.We compare our algorithm to other representation-based community detection al-
gorithms on several multiplex network datasets, which shows that our algorithm

outperforms the others, especially when the target layer is noisy (e.g. much sparser
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than other layers). We further verify this property by testing our algorithm on net-

works with removed edges.

1.3 Thesis Structure

The rest of this thesis is structured as follows: we unify the representation-based
community detection methods with a shared procedure and introduce several different
models of representation-based community detection in our next chapter. Chapter 3
presents our own work, which includes the formulation of our objective, our framework
and its implementation, as well as experiments and results. Finally, we summarize this

thesis and discuss some future research directions in Chapter 4.
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Chapter 2 Representation-based Community Detection

2.1 A Shared Procedure

Representation-based community detection techniques are a collection of methods
for monoplex community detection. They have a shared procedure as follows: First,
they define some objective function on the network G(V, E) to optimize. Then, some
utility matrix U of the graph depending on the objective function is projected into some
latent space in the optimization process, resulting in some latent feature representation
H. Finally, some clustering algorithm is applied to the learned latent representation H to

get the community partition result C. This shared procedure is illustrated in Figure 2-1.

Construct Utility Learn Latent ]
Matrix Based on the Representation Based Apply Clustering
Network | Objective Function | Utility on Optimization Latent Algorithms Community
G(WV,E) Matrix U Feature H Partition C

Figure 2-1 The shared procedure of representation-based community detection methods.

In the sections that follow, we will introduce different models of representation-

based community detection.

2.2 Stochastic Model

In stochastic model [64], the entry of adjacency matrix A;; is viewed as the proba-
bility that node 7 and j are connected, which can be further considered to be determined
by the probability that this pair of nodes generate edges belonging to the same commu-
nity. Denote H € R"*" as the latent variables (where r is the number of dimensions in
the latent space), such that H;; represents the probability that node 7 generates an edge
belonging to kth community. Then, the probability that node 7 and j is connected by an
edge in kth community is H;;H;, and the probability they are connected can thus be
expressed as

\
Aij=) HiyHj @1
k=1

10



Chapter 2 Representation-based Community Detection

As aresult, the community detection problem can be formulated as a non-negative matrix

‘aCt()lizati()]l,

Then, clustering algorithms can be applied to the latent variables H to obtain the com-
munity partition. Note that the utility matrix in stochastic model is simply the adjacency

matrix A.
2.3 Latent Space Model

The latent space model [65] maps the nodes in a network into a low-dimensional Eu-
clidean space such that the proximity between the nodes based on network connectivity
are kept in the latent space. Introduce P € R™*" as the proximity matrix for the net-
work with P;; denoting the distance between node 7 and and node j. When the distance
measure is specified (e.g. geodesic distance [66]), P can be computed from the network
adjacency matrix. Now, denote H € R™*" as the coordinates of nodes in the latent space,

we have [67]
1 1 1 ~
HHT:_5(1——11T)(P0P)(I——11T):P (2-3)
n n

where I is the identity matrix, 1 = (1,...,1) and o represents entrywise multiplication.

This can be formulated as the matrix factorization problem below,
min L = ||P — HH"||% (2-4)

Then, clustering algorithms can be applied to the coordinates in latent space H to obtain

the community partition. Note that the utility matrix in stochastic model is P.
2.4 Spectral Clustering Model

Spectral clustering [68] is related to graph partition which minimizes the number
of edges between communities, with some constraints to avoid singletons (i.e. communi-
ties only consisting of a single node). Their objective can be formulated as a min-trace

problem,

min L =Tr(H'LH) (2-5)
HTH=I

11
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where H € R™*" represent latent features and Lis graph Laplacian and can be computed

by the adjacency matrix based on different types of constraints. For example,

~ D-A (Ratio Cut)
L= (2-6)

I-D /2AD~Y/2 (Normalized Cut)

where D is the degree matrix of the network

ki ifi=y
D;; = 0<i,j<n 2-7)
0  otherwise

L is the utility matrix for spectral clustering and rows of H can be clustered to get the

community partition.
2.5 Modularity Optimization Model

Modularity is a widely-accepted measure of community detection effectiveness.
Maximizing modularity on a network is equivalent to the following max-trace problem
[69],

max Q= Tr(H'MH) (2-8)
Tr(HTH)=n

where H € R™*" is the community indicator matrix and M is the modularity matrix, with

kiks
Mz‘jZAij—;—mj,léi,jén (2-9)

Modularity matrix M is the utility matrix for modularity optimization. Note that the
indicator matrix H can also be viewed as a latent feature matrix, and thus clustering

algorithms can be applied to its rows to obtain the community partition.
2.6 Nonlinear Mapping Model

While previous methods introduced in this chapter all find linear embedding of the
utility matrix as the feature matrix, in deep reconstruction model nonlinear embedding of
the utility matrix is generated. In [70], modularity matrix M, as input of an auto-encoder,

is mapped to a low-dimensional representation H € R"*". The ith column of H, which

12
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represents node ¢ in the latent space, is mapped as
hl' :g(WHmi—i—dH) (2-10)

where W € R™*", dy € R™*! are the parameters to be learned in the encoder, m; is the
ith column of the modularity matrix M, and ¢(-) is an element-wise nonlinear mapping,

such as sigmoid function

1
Isigmoid(T) = P (2-11)
or tanh function
et —e™ "
Gtanh(T) = prpp— (2-12)
The decoder maps the latent representation H back into the original data space,
I‘Z':l(WMhi-i-dM) (2-13)

where r; is the ith column of the reconstructed data R € R™"*", W, € R"*", d,s €
R™*1 are the parameters to be learned in the decoder and [(-) is another element-wise
nonlinear mapping similar to ¢(-). The objective of the auto-encoder is to minimize the

reconstruction error between original M and reconstructed R,

n
minL =Y Ly(m;,r;) (2-14)
1=1

where Lg(m;,r;) is a distance function (e.g. Euclidean distance or sigmoid cross-entropy
distance). When the parameters of the auto-encoder is learned, the columns of the latent
nonlinear embedding H can be clustered to find the community partition. In practice, a
series of auto-encoders can be stacked for the reconstruction task to take advantage of a

deep structure.

13
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Chapter 3 Transfer Learning for Multiplex Community Detection

3.1 Problem

3.1.1 Observation

While in Chapter 1 we introduced various methods and algorithms for community
detection in multiplex networks, all of them are based on a plausible assumption that the
underlying community partitions for all layers are identical, and their objective is thus
to find that partition. However, considering the fact that different layers of a multiplex
network encode different types of relationships, we argue that for each layer, there is a
distinct community structure behind it. And while the community partitions for different
layers can be related to each other as nodes may share some common behaviors across
layers (e.g. high-degree), they should be intrinsically distinct as they are actually different
types of communities (e.g. friend circles vs. work groups). This argument is based on
our observation of real-world multiplex networks.

Consider, for example, the Aarhus Computer Science Department Network (AUCS)[71],
which is an unweighted and undirected five-dimensional multiplex network representing
interactions between employees of the computer science department at Aarhus University
in Aarhus, Denmark. It consists of 61 employees (administrative staff, faculty, research
associates, Ph.D. students, and postdocs) belonging to eight work groups. The five inter-
action dimensions are lunch (1), Facebook (2), co-authors (3), leisure (4) and work (5). A
community partition found for all the layers by MDLPA algorithm [43] is shown in Figure
3-1. Although the community structures identified correspond well to the ground-truth
work groups, it is easy for us to find that edges in the first dimension dominate intra-
community connection for all work groups. Meanwhile, the second dimension accounts
for the majority of inter-community connection. This finding suggests that while the un-
derlying community structure for the first layer may be highly correlated to real-world
work groups, it is not the case for second layer. Actually, the second layer (Facebook in-

teraction) may encode friendship relations that are independent of work-based relations.

14



Chapter 3 Transfer Learning for Multiplex Community Detection

This observation is consistent with our argument that different layers have different com-
munity structures. On the other hand, we also note that nodes do share some common
features across different dimensions. For example, consider two specific nodes, U141
and U92 in the work group colored by yellow. U141 is only connected to three other
nodes U48, U92 and U68, and only in the first dimension, which may indicate that he or
she is a new-comer or a taciturn individual who avoids socializing with others. U92, on
the contrary, is connected to 7 nodes in first dimension, which may indicate that he or she
1s more out-going. And this characteristic is also reflected in other dimensions as U92 is

also connected to other nodes in the second, fourth and fifth dimension.

@

Q)
o
e e

® ®

©

Figure 3-1 The community structures (indicated by different colors) of the Aarhus computer science
department network as identified by MDLPA [43]. Numbers on edges designate dimension
IDs.

Based on our observation, we propose a different and more realistic objective for
multiplex community detection, i.e. finding distinct community partitions for each layer
of a multiplex network, while exploiting the common features of nodes in different lay-
ers (i.e. transferred knowledge). We will formally define this objective in the following

subsection.

15
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3.1.2 Formulation

We borrow the notations of multiplex community detection from Chapter 1 except
for the community part. Instead of finding a community partition C = {C1,...,Cy,_,,. }
for all the layers, we aim to find a distinct community partition for each layer, i.e. Cx =
{Ck1, ...,C’chomK} for Kth layer, where kcom - is the number of communities to be
found in K'th layer. Unlike monoplex methods which find the community partition Cx
with topological features only in K'th layer (i.e. layer-specific features), we hope to make
use of those from other layers as well (i.e. common features). Formally, we define our

problem as follows.

Problem 3.1 Given a N-layer multiplex network G(V, Ex, ..., En) with adjacency matri-
ces Aq,..., Ay, find distinct community partitions in each layer, Cy,...,Cy, so that both

common features and layer-specific features of nodes are exploited.

Note that this definition of our problem is in the multi-task learning setting, as the
community partition results of all layers are found simultaneously. In reality, only some
layer may be of interest, which leads to the following definition of our problem in the

transfer learning setting,

Problem 3.2 Given a N-layer multiplex network G(V, E1, ..., Ex) with adjacency ma-
trices A1, ..., Ay, find distinct community partition in some layer K', Cy, so that both
transferred knowledge from other layers and layer-specific features of K'th layer are

exploited.

In the following section when we develop our framework, we shall see that it can

accommodate both settings of the problem, with little modification.
3.2 Algorithm

3.2.1 Framework

Since we are the first to define the objective of multiplex community detection as
to finding a community partition for some layer with transferred knowledge from other

layers, we can’t use multiplex community detection techniques introduced in Chapter 1.

16



Chapter 3 Transfer Learning for Multiplex Community Detection

U, [X B4] > C4
U, [X B,] > G,
Uy-1 [XBy-1] » Cy—1
Uy [XBy] » Cy
Learning Representations Clustering Representations

Figure 3-2 Framework of our algorithm. Uy, ..., Uy are the utility matrix of each layer, X is the com-
mon feature matrix shared by all layers, B, ..., By are the layer-specific feature matrices,

and Cy,...,Cy are the found community partitions for each layer.

Here, we consider extending the representation-based community detection methods in
Chapter 2 by incorporating shared features. Our framework is illustrated in Figure 3-2.

Unlike previous representation-based community detection methods which work on
monoplex networks and only learn a latent representation for each layer separately, our
framework takes the utility matrices Uy, ..., Uy of all layers as input and collectively
finds a common feature matrix X (X € R"*¢, where c is the number of dimensions of
common features), along with layer-specific feature matrices B1,...,By (Bg € R™"*°K
where cg is the number of dimensions of layer-specific features of K'th layer). X and
Bg then collectively form the combined feature matrix [X By for K'th layer. In this
way, the combined feature matrix for each layer incorporates shared features, or trans-
ferred knowledge from other layers, which can help improve the community detection
results. Once the latent representations [X B],...,[X By] are learned, we can apply
clustering algorithms on the latent representation of each layer separately. And the com-
munity partition for each layer is the result of the clustering algorithm. We summarize
our framework of transfer learning for multiplex community detection in Algorithm 1.

Note that our framework in Figure 3-2 and Algorithm 1 solve the problem in the
multi-task learning setting. To accommodate it to the transfer learning setting, we apply
the representation clustering algorithm to the target layer K’ only, instead of all the layers,
while keeping our representation learning process unchanged.

To implement our framework, the representation learning method and the represen-

tation clustering method must be specified. In the following subsections, we will intro-
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duce a possible implementation of these methods. However, it is noteworthy that our

framework can easily accommodate different sets of learning and clustering methods.

Algorithm 1 Our Framework of Transfer Learning for Multiplex Community Detection

Input: Utility matrices of a N-layers multiplex network Uq,..., Uy
Output: Community partitions for each layer Cy,...,Cx

1. X,Byq,...,By < learn_representation(Uy1, ..., Uy)

2: for K <~ 1to N do

3: Cx < cluster_representation(X,B)

4: end for

5: return Cq,...,Cy

3.2.2 Learning Representations

While in Chapter 2 several different types of representation learning methods are
available for monoplex networks, none of them are directly applicable to our problem
since they only deal with monoplex networks. Here, we consider extending the stochastic
model in Section 2.2, which is formulated as a symmetric non-negative matrix factoriza-
tion problem.

The utility matrices Uy,..., Uy are the adjacency matrices Ay,...,An as in the
stochastic model. For each layer K, our objective is to find the combined feature matrix
[X B that best reconstructs the original adjacency matrix A . Adopting the square

loss function to quantify the reconstruction error, we have
Ly =||Ax — X BK][X Bx]"[|7 = [|Ag — XX ~BgB|[% (3-1)
for K'th layer. Note that if we minimize Ly separately for each layer,

in Lp=|Ar—XXT _BiBL|J2 3-2
omin o L ||Ax KBkl (3-2)

then this formulation reduces to monoplex stochastic model and [X B/ is the latent
feature matrix H. Since we want to transfer knowledge from other layers through the
common feature matrix X to help improve the latent representations, we simultaneously

minimize the reconstruction error of all layers,

N

I L= Ar—XXT _B.BL|2 3.3
X>0,BIR.1..H,BN>O KZ_leH K kBkllF (3-3)
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where wy 1s the weight for the reconstruction error of K'th layer. If there is no prior
knowledge about which layer should contribute more to the common feature matrix (e.g.
some layer is less noisy), we can simply set all weights to be equal. Then Equation 3-3

reduces to

N
i L= Ag —XXT -BgBL|[7 3.4
X>O,Brf1,.1.l.l,BN>0 Kle K kBkllp (3-4)

For this optimization problem, we have the following theorem.

Theorem 3.1 The sum of residuals in Equation 3-4, L, can’t be minimized to zero.

Proof We only need to prove that |[|Ax — XX — BxkBZL||% > 0, which is equivalent
to Ax # XXT + Bg. We prove this by showing that XX + BxBZ- is positive semi-
definite and that A g is not.

First, for any non-zero vector s € R™* 1 we have
sT(XXT +BgBL)s =s"XXTs +s"BxBLs
=g'g+h’h
= [lgl[* +[|n[[* >0 (3-5)

where g = XT's h = B}F(s. This shows that XXT + B KB;( is positive semi-definite.

Then, for undirected networks with no self-loops, we have A g to be symmetric and
n n
> Ai=Tr(Ak) =) Akii=0 (3-6)
i=1 i=1

where \1,...,\, are the n eigenvalues of A . Therefore, either there is at least some
Ai <0or A\ =... = A\, = 0. However, since A g is symmetric, A\ = ... = \,; = 0 directly

leads to A i = 0. Thus, A\; < 0 holds, which means A g can’t be positive semi-definite. ll

Theorem 3.1 states that the reconstruction error can’t be minimized to zero, which
means that it is impossible to perfectly reconstruct the adjacency matrices with the latent
feature matrices.

Now that we have our objective function for learning representations, we need a pro-
cedure to optimize it. While Equation 3-4 resembles the objective function of symmetric

non-negative matrix factorization, it can’t be solved accordingly. Consider the simplest
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case when both X and By (K # K') are fixed and we want to find the optimal B’K.

Then, Equation 3-4 reduces to

min L =||Ag — XXT —Byi/BL||% (3-7)

B >0
However, since A’ — XXT" > 0 doesn’t always hold, we can’t apply standard symmetric
non-negative matrix factorization procedures (such as [72], [73] and [74]). In the fol-
lowing, we design a new set of alternating multiplicative update rules for optimizing our
objective, based on semi-NMF techniques [75].
We first compute the partial derivatives of our objective function L with respect to

X and By,

N
OL T T
ox = ANXX X +4) (BgkBE — Ax)X (3-8)
K=1
—_— = 4BKBKBK—|—4(XX —AK)BK (3-9)
OBx

Since we require both X > 0 and Bx > 0, we introduce the respective multipliers:
AeR"TrgeRK 1<KLKN (3-10)
Then, we have the following Lagrangian:
N
L(X,Bg)=L-Tr(AX") = ) " Tr(TxBj) (3-11)
K=1

From the stationarity of Karush-Kuhn-Tucker conditions we have

oL _oL oL _ 0L

X ox M0y "o, T (3-12)
which leads to
N
A=4ANXX"X+4> (BgkBf - Ax)X (3-13)
K=1
Tk =4BBEBr +4(XXT — Ax)Bk (3-14)

Then, from the complementary slackness of Karush-Kuhn-Tucker conditions

A X =0,TkijBkij =0 (3-15)
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Substituting Equation 3-13 and Equation 3-14 into Equation 3-15, we have

N

(=) (Ax -BgBL)X+NXXTX);;X;; =0 (3-16)
K=1

(—(AK—XXT)BK—l—BKB%BK)Z‘jBKZ‘]‘ =0 (3—17)

Based on Equation 3-16 and Equation 3-17, we design the following update rules for X
and By

(Ck—1(Ax —BkBL) "' X);

X X = (3-18)
T\ (Ko Ak —BrBE) X)s + (NXXTX);

A —XXT)"Bg);;

Brij < Brj g ;{— ) Brky T (3-19)
((Agx —XX")"Bk)ij + (BkBgBr)ij

where we denote the positive and negative parts of a matrix E as
Et = (|[E|+E)/2 (3-20)
E™ = ([E[-E)/2 (3-21)

To minimize our objective, we first initialize X and By, ..., B to matrices with entries
that are uniformly distributed in [0, 1]. Then, we alternatingly apply Equation 3-18 to X
and Equation 3-19 to Bx,1 < K < N until convergence.

For this set of update rules, we have the following theorem.

Theorem 3.2 The limiting solutions of the update rules in Equation 3-18 and Equation
3-19 satisfy Karush-Kuhn-Tucker conditions in Equation 3-16 and Equation 3-17.

Proof We only prove that Equation 3-18 satisfies Equation 3-16 at convergence, and that
Equation 3-19 satisfies Equation 3-17 can be proved in a similar manner.

At convergence, we have X*° = X!*! = X* = X_ Then, from Equation 3-18

X, =X, _ (CRo1(Ak — BrBi)) X):j (3-22)
(Ck=1(Ax —BgBL)) X)i; + (NXXTX);

Square both sides, multiply it by the denominator, and transpose it, we get

N N
(Y (Axk—BgBL) — (Y (Ax —BxB%) )X+ NXXTX);;X2 =0 (3-23)
K=1 K=1
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Note that
N LW N
() (Axk—-BgBL)) —(> (Ax—BgBL)) =) (Ax—BgBk) (3-24)
K=1 K=1 K=1

Therefore, Equation 3-23 reduces to

N
(= ) (Ax —BgBE)X + NXX'X); X7 =0 (3-25)
K=1
Equation 3-25 is equivalent to Equation 3-16, the respective Karush-Kuhn-Tucker condi-

tion, since both require either the first term (— > % _; (Ax — BgBL)X + NXXTX);;

to be zero or the second terms X;;, X?j to be zero. [ |

Theorem 3.2 indicates that if our algorithm converges, then its solution converges to
a Karush-Kuhn-Tucker stationary point. In the next section, we will empirically show that
under this set of alternating multiplicative rules, the reconstruction error converges at a
fast rate. Therefore, in our implementation, we only need to set a maximum number
of iterations 7', after which our algorithm stops. In general, our algorithm produces
relatively stable outputs, independent of network size and other properties, when 7' is

greater than 20.

Algorithm 2 learn_representation(Aj, ..., Ay)

Input: Adjacency matrices of a /N-layers multiplex network Aq,..., Ay
Output: A common feature matrix X and layer-specific feature matrices By,..., By
1: XijaBlij; cery BNij — rand([O, 1})

2. fort=1—"T do
(CR—1(Axk-BgBL) ' X),
3: Xij — Xij -k !
) ”K 1” %zd%ﬂ(AK—BKBﬂ)) X)i;+(NXXTX);;
4: or =1 — 0

B B (Ax—XXT)"Bg);;
Brij < Briy \/((AK—XXT)_ Br)ij+(BgkBLBK);;
6: end for

d

7: end for

8: return X, B{,..., By

We summarize our representation learning algorithm in Algorithm 2. The complex-
ity of Algorithm 2 can be analyzed in a quite straightforward manner. The update rule of
X in Line 3 requires O(Nn?(c+max(cy,...,cy))) operations by schoolbook matrix mul-

tiplication. For each By, the update rule in Line 5 requires O(n?(c + cx)) operations.
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Then, to update all the Bx,1 < K < N, O(Nn?(c+ max(cy,...,cy))) operations are
required. Therefore, for a total of 7" iterations, Algorithm 2 has a computational cost of
O(NTn?(c+max(cy,...,cn))). For most real-world networks, N, ¢, cjc < nand T ~ 20,

and our representation learning algorithm runs in O(n?).

3.2.3 Clustering Representations

After the latent representations are learned, any standard clustering algorithm can
handle the task of clustering representations, as they are in feature vector form. Therefore,
in our implementation, we simply apply k-means algorithm for clustering.

The representation clustering algorithm is shown in Algorithm 3. Since it directly
uses k-means, its complexity is O(T'ndkcom ), where T' is the number of iterations un-
til k-means convergence (7" ~ 100), d = c+ c’K < n is the number of columns of the
combined feature matrix [X Bg/|, kcom < 1 is the number of communities to be found.

Therefore, the representation clustering algorithm runs in O(n).

Algorithm 3 cluster_representation(X,Bf)

Input: The common feature matrix X and the layer-specific feature matrix By of K'th
layer.
Output: The community partition for K'th layer Cg .
I: Cx < k-means([X Bxg])

2: return Cg

3.3 Experiment

In this section, we will introduce our experiment setup for evaluating our algorithm

and comparing it with monoplex methods.

3.3.1 Dataset

Unlike monoplex network, of which both synthetic benchmark datasets (e.g. Girvan-
Newman [23] and Lancichinetti-Fortunato-Radicchi [76]) and large real-world dataset
repositories (e.g. Stanford Network Analysis Project® and UC Irvine Network Data Repos-

itory®) are readily available to the community, only a few real-world multiplex networks

® http://snap.stanford.edu/data/index.html
@ https://networkdata.ics.uci.edu/
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are well recorded. We collect six small(~ 100 nodes) to medium (~ 10, 000 nodes) multi-
plex networks for our evaluation purposes as our algorithm (O(n?)) can’t deal with large
networks (~ 1,000,000 nodes) in a short time. Despite this, we also list some large mul-
tiplex networks in this subsection for other possible implementations of our framework,
which may be better scalable (~ O(n)).
eAUCS [71]. As introduced in Subsection 3.1.1, Aarhus Computer Science Depart-
ment Network (AUCS) is an unweighted five-dimensional multiplex network. Each
layer represents one type of interaction between the employees of the computer sci-
ence department at the Aarhus University: lunch, Facebook, co-authors, leisure and
work. It has 61 nodes and 620 edges. It is available at http://multilayer.it.
uu.se/datasets.html.
eSeventhgrade [77]. Seventhgrade is an unweighted three-dimensional social net-
work. It is derived from surveying a class of seventh grade students in a school in
Victoria, Australia. The three layers record students’ answer to the following ques-
tions: 1. Who do you get on with in the class? 2. Who are your best friends in the
class? and 3. Who would you prefer to work with? It has 29 nodes and 740 edges.
It is available at http://deim.urv.cat/~manlio.dedomenico/data.php.
ePhysician [78]. Physician is an unweighted three-dimensional social network.
It is concerned with the impact of network ties on the physicians’ adoption of a
new drug, tetracycline in Illinois, Peoria, Bloomington, Quincy and Galesburg, the
United States. The three layers record physician’ answers to the following ques-
tions: 1. When you need information or advice about questions of therapy where
do you usually turn? 2. Who are the three or four physicians with whom you most
often find yourself discussing cases or therapy in the course of an ordinary week,
last week for instance? and 3. Would you tell me the first names of your three
friends whom you see most often socially? It has 246 nodes and 1,551 edges. It is
available at http://deim.urv.cat/~manlio.dedomenico/data.php.
eBos [79, 80]. This unweighted four-dimensional biological network is derived
from the Biological General Repository for Interaction Datasets (BioGRID®). It
encodes the genetic and protein interactions of Bos Linnaeus. The four dimen-

sions represent physical association, association, direct interaction and coloniza-

® https://thebiogrid.org/
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tion, respectively. It has 321 nodes and 325 edges. In our experiment, we only
keep the first and third layers as the other two layers are too sparse (containing 9
and 3 edges, respectively). This dataset is available at http://deim.urv.cat/
~manlio.dedomenico/data.php.

eCelegans [81, 82]. Celegans is an unweighted three-dimensional biological net-
work which represents neuronal network of the nematode Caenorhabditis elegans.
The three layers corresponds to three different types of synaptic junction: elec-
tric junction, chemical monadic junction and chemical polyadic junction. It has
279 nodes and 5,863 edges. It is available at http://deim.urv.cat/~manlio.
dedomenico/data.php

off-tw-yt [83]. ff-tw-yt is an unweighted three-dimensional online social network.
It has been obtained starting from Friendfeed, a social media aggregator. Users of
Friendfeed comment on other messages much like in Facebook, which forms the
first layer of the network. The second layer and third layer represent Twitter and
YouTube interaction of the same set of users with associated accounts respectively.
It has 6,407 nodes and 74,862 edges. It is available at http://multilayer.it.
uu.se/datasets.html.

We also list three large networks for evaluating other possible implementations of

our framework.

eBiogrid [84]. This two-dimensional biological network is based on protein in-
teractions in the BioGRID dataset. The two layers represent physical and genetic
interactions between proteins, respectively. It has 54,549 nodes and 503,049 edges.
It is available at http://www.maths.qmul.ac.uk/~vnicosia/sw.html.

off-tw [83]. Similar to ff-tw-yt, this network only records interaction of users who
have associated accounts in Friendfeed and Twitter, which allows a much bigger
size than ff-tw-yt. It has 155,804 nodes and 13,657,550 edges. It is available at
http://multilayer.it.uu.se/datasets.html.

eAminer [85]. Aminer itself is a collection of research papers, author informa-
tion and co-authorship of the academic community. A two-dimensional academic
network can be derived from the raw data. The nodes of the network are the schol-
ars and the two types of connections represent co-authorship, where two scholars

are connected if they co-author a paper, and citationship, where two scholars are
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connected if one’s paper cites the other’s. This derived network has 1,712,433
nodes and 42,272,409 edges. The raw data is available at https://aminer.org/
aminernetwork.

For all the datasets used in our experiments, we do the following pre-processing

procedures:

1.Make its adjacency matrices symmetric by adding a returning edge for every ex-
isting edge. Any directed layer becomes undirected after this procedure.
2.Set the main diagonal entries of the adjacency matrices to zero. This removes all

self-loops in the network.

3.3.2 Metric

Since our objective is to improve community detection performance in some layer

with transferred knowledge from other layers, we only need evaluation metrics for the

monoplex network, instead of multiplex network. For monoplex network, two types of

quality functions are most widely accepted.

eNormalized Mutual Information (NMI) [86]. Normalized mutual information is
a measure of similarity of partitions borrowed from information theory, which has
proved to be reliable [87]. It evaluates the community detection results by calculat-
ing the correspondence from the obtained partition C to the reference partition C’,

which is often derived from ground truth. The NMI is defined as follows,
21(C,c’)

H(C)+ H(C)

where I(C,C") = H(C)— H(C|C’) is the mutual information between C and C’, H(C)

NMI(C,C') = (3-26)

and H (C') are the Shannon entropy of C and C’ respectively, and H(C|C’) is the con-
ditional entropy of C given C'. NMI ranges in [0, 1], with NMI = 1 indicating that
the reference partition and the obtained partition are identical. However, as an in-
ternal criterion, NMI requires that we know exactly how the underlying community
partition is, which is available for many monoplex networks but very few multiplex
networks. That is because even when some ground-truth community partitions are
available in some multiplex networks (e.g. work group information is available for

AUCS), we can’t decide which layer these community structures correspond to.
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Therefore, we must resort to external criteria for evaluating our results, the most
widely accepted one of which is introduced below.

eModularity [35]. As an external criterion to assess the community detection effec-
tiveness, modularity can be computed from the obtained community partition along
with network topological information, in the absence of ground truth. It measures
how far the network interactions deviate from random connections, and is defined

as follows,

1 kik;
Q=5-> > “Ay—57) (3-27)

Cecicel,je’

where A;; is the actual connection between a pair of nodes 4, j in the same com-

%T]:f is the expected number of edges between 7 and j if edges are placed

munity C,

randomly, the coefficient ﬁ is introduced to normalize the modularity value into
[—1,1]. For modularity, large value indicates more deviation from the random
graph, and thus better community partition.

In our experiments, we use modularity to evaluate our community detection results.
3.3.3 Baseline

To illustrate the effect of the transferred knowledge that our algorithm exploits, we
compare our results with other monoplex non-negative matrix factorization-based meth-
ods. Specifically, we consider two implementations of symmetric non-negative matrix
factorization approaches.

eCoordinate Descent (CD) [88]. This algorithm directly solves the symmetric

non-negative matrix factorization, a fourth-order nonconvex problem, by solving
a series of fourth-order univariate subproblems exactly with efficient coordinate
descent schemes. The algorithm is proved to converge and can be performed in
O(rmax(S,nr)T), where n is the number of columns of the original matrix, r is
the number of columns of factorized matrix, .S is the number of nonzero entries
in the original matrix, and 7" is the number of iterations. Their implementation is
available at https://sites.google.com/site/nicolasgillis/code.
eNewton [74]. This algorithm takes a Newton-like strategy, with several improve-

ments compared to the original projected Newton method. The improved algorithm
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is guaranteed to converge, and can be performed in O(n3rT'), where n is the num-
ber of columns of the original matrix, r is the number of columns of factorized
matrix, and 7" is the number of iterations. Their implementation is available at
https://github.com/dakuang/symnmf.

Adjacency matrix of the target layer is factorized by these monoplex symmetric

non-negative matrix factorization methods to obtain the latent feature matrix. Then, the

representations learned are clustered by k-means, the same clustering algorithm our im-

plementation uses, to obtain the community partition for the target layer.

3.3.4 Parameters

Our algorithm requires several parameters to work properly. We discuss our choices

and present our explanations as follows.

eTarget layer K’. Considering the effect of ‘negative transfer’, where the trans-
ferred knowledge contributed to reduced performance [56], not all layers can achieve
improved performance through our algorithm. Basically, sparse layers witness
more improved performance as some edges may not reveal themselves in the ob-
served network data. Therefore, we generally choose the most sparse layer of the
multiplex network as the target layer to receive the transferred knowledge. For
AUCS, we choose the third layer (Facebook), for Seventhgrade, third layer (work
with), for Physician, first layer (ask for advice), for Bos, second layer (direct inter-
action), for Celegans, second layer (chemical monadic junction), and for ff-tw-yt,
first layer (YouTube).

eNumber of communities to be detected in the target layer k.,,,. Since there is
hardly any ground truth about the test datasets, we can only choose this parameter
empirically. We run our algorithm with several different number of communities
and keep those with largest modularity. For the test datasets, we choose 10 as
the number of communities for target layer of AUCS, 3 for Seventhgrade, 4 for
Physician, 10 for Bos, 10 for Celegans and 1000 for ff-tw-yt.

eLatent feature dimensions c,cx. The number of dimensions of latent feature
matrices are much less than that of the original utility matrix, which is usually quite
sparse. Generally, we select smaller dimensions of layer-specific feature matrices

for sparser layers since there is less information to encode, and the number of
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dimensions for common feature matrix is usually similar to the minimum of those
for layer-specific feature matrices. Common feature matrix dimensions and layer-
specific feature matrix dimensions are 2 and [1,1,1,1,1] for AUCS, 2 and [2,2,2]
for Seventhgrade, 2 and [2, 1, 1] for Physician, 2 and [2, 1] for Bos, 1 and [1,2, 5] for
Celegans and 1 and [1,9, 13] for ff-tw-yt.
eNumbers of iterations 7", 7’. Since both our learning algorithm and clustering al-
gorithm converge fast and produce stable output regardless of input network data,
we choose fixed numbers of iterations for both algorithms. For the representation
learning algorithm, we choose 1" = 20, and for the representation clustering algo-
rithm, we choose 7" = 100.
For the baseline algorithms, we use r» = ¢+ cx for the number of columns in latent
matrix of K'th layer, which guarantees same learning power as our algorithm. We use

default options provided by their authors for choices of other parameters.

3.3.5 Environment

Our algorithm is implemented in MATLAB, as well as the two baseline methods.
All experiments are conducted in MATLAB 9.0.0.341360 (R2016a), running on a laptop
with Intel 17-4710MQ CPU and 8GB RAM.

3.4 Results

3.4.1 Convergence Analysis

We run our algorithm on the six test datasets. The decrease of reconstruction error
(i.e. value of the objective function) as the number of iterations increase is shown in
Figure 3-3. Note that the reconstruction error in all figures is drawn in logarithmic scale
for better illustration.

As is quite obvious in these figures, the reconstruction error drops sharply after
the first iteration, because the latent feature matrices are randomly initialized. After the
second iteration, however, the error decreases slowly but also steadily as the number of
iterations increase, and reaches to a relative stable value before 20 iterations. As previous

proved in Theorem 3.2, the solution converges to a Karush-Kuhn-Tucker stationary point
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Reconstruction Error vs. Number of Iterations (AUCS)
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Figure 3-3 Relationship between reconstruction error and number of iterations for the

test datasets.(a)AUCS;(b)Seventhgrade;(c)Physician;(d)Bos;(e)Celegans;(f)ff-

tw-yt
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if it converges. Combining it with our empirical results, we can say that the solution of
our learning algorithm practically converges to a Karush-Kuhn-Tucker stationary point.
Also note that the reconstruction error can’t decrease to zero, which has also been proved

in Theorem 3.1.
3.4.2 Comparative Analysis

We now compare the community detection performance of our algorithm (Multi-
plex) with other representation-based monoplex methods (Monoplex-CD and Monoplex-
Newton). For ff-tw-yt dataset, we run each algorithm 100 times and compute the mean
and the standard error of modularity of the result partition for comparison. For other
datasets, we run each algorithm 10,000 times. The results are summarized in Table 3-1

and illustrated in Figure 3-4.

Comparison of Community Detection Performance
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Figure 3-4 Comparison of community detection performance in terms of modualrity. Error bars depict

standard errors.

For all the test datasets, we can see that our multiplex algorithm outperforms the

monoplex algorithms. This is expected as our algorithm make use of transferred knowl-
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Table 3-1 Community detection performance of different algorithms

AUCS  Seventhgrade Physician Bos Celegans ff-tw-yt

Multiplex 0.317£0.096 0.161£0.030 0.390+0.066 0.2514-0.040 0.1544-0.024 0.241+0.023
Monoplex-CD 0.310+0.065 0.159+0.027 0.38940.065 0.232+0.031 0.146+£0.018 0.183£0.012
Monoplex-Newton 0.29740.051 0.160+0.028 0.385+0.065 0.22940.030 0.149+0.021 0.172+0.017

edge from other layers of the network through the common feature matrix, while the
monoplex methods only have access to the topological features of that layer. The supe-
riority of our algorithm is most prominent for the ff-tw-yt dataset (0.241 vs. 0.183 &
0.172), where the level of sparsity between layers is most significant (592 vs. 31921 &
42324). This means our algorithm is especially effective when the target layer is noisy
(e.g. large number of missing links). We will further verify this property in the next

subsection.
3.4.3 Noisy Condition Analysis

To further investigate the performance of our algorithm under noisy conditions, we
randomly remove a set of edges from the target layer. The proportion of removed edges
ranges from [0,0.5], with 0.05 as the step length. For each step, we randomly generate
100 adjacency matrices that have the indicated proportion of edges removed. For each ad-
jacency matrix, we run the algorithms 100 times and compute the mean and the standard
error of modularity. Note that when computing modularity, we use the original network
information instead of that with edges removed, because the original topological features
are more consistent with the underlying community structure, given no prior knowledge.
We run the algorithms on the AUCS, Seventhgrade, Physician and Bos datasets and the
results with comparison to the monoplex methods are shown in Figure 3-5. We also com-
pute the proportion of performance retained when 50% edges are removed for the three

algorithms in Table 3-2, Table 3-3 and Table 3-4, respectively.
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Community Detection Performance in Noisy Conditions (AUCS)
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Figure 3-5 Community detection performance in terms of modularity in noisy condi-

tions.(a)AUCS;(b)Seventhgrade;(c)Physician;(d)Bos

For all the datasets tested, our algorithm outperforms the other two monoplex meth-
ods in all noisy conditions. For the AUCS, Seventhgrade and Physician datasets, the
performance of our algorithm decreases at a much slower rate than monoplex methods.
For the Bos dataset, while our performance decrease at a similar rate to the monoplex
methods, a constant performance gap is witnessed. Both cases indicate that our algo-
rithm is far more robust in noisy conditions, as topological information can be retrieved
from other layers through the common feature matrix. Specifically, when the noise level
is high, e.g. when 50% edges are removed, our algorithm can still retain an remarkable
level of performance, as high as 83.7% (in AUCS) and at least 63.7% (in Bos) of its orig-

inal performance. By comparison, monoplex methods can only retain approximately half
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of its performance, which is expected as half of the edges are removed.

Table 3-2 Retained Community Detection Performance in Noisy Condition (Multiplex)

AUCS Seventhgrade  Physician Bos

No Noise 0.317£0.096 0.161+0.030 0.3904+0.066 0.2514+0.040
50% Edges Removed 0.265+0.097 0.125+0.044 0.277+0.064 0.160+0.040
Retained Performance 83.7% 77.7% 71.1% 63.7%

Table 3-3 Retained Community Detection Performance in Noisy Condition (Monoplex-CD)

AUCS Seventhgrade  Physician Bos

No Noise 0.310£0.065 0.159+0.027 0.389+0.065 0.2324+0.031
50% Edges Removed 0.208+0.072 0.080+0.040 0.183+0.047 0.127+0.029
Retained Performance 67.0% 49.9% 47.0% 54.6%

Table 3-4 Retained Community Detection Performance in Noisy Condition (Monoplex-Newton)

AUCS Seventhgrade  Physician Bos

No Noise 0.297+£0.051 0.16040.028 0.385+0.065 0.229+0.030
50% Edges Removed 0.2654+0.079 0.07940.040 0.18440.046 0.128+0.026
Retained Performance 64.6% 49.0% 47.8% 55.8%
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Chapter 4 Conclusion

4.1 Summary

In this thesis, we define a novel objective for the multiplex community detection
problem. The goal is to refine community detection results in some layer of a multiplex
network with transferred knowledge from other layers. We achieve this goal with an ex-
tended representation-based community detection framework, which first learns a shared
common feature representation and layer-specific feature representations simultaneously
and then cluster the combined representations to obtain the community partition. An im-
plementation of our framework, which includes an extended symmetric non-negative ma-
trix factorization approach for learning representations and k-means for clustering repre-
sentations, is provided and compared with other representation-based monoplex commu-
nity detection algorithms on several real-world multiplex network datasets. Results show
that our implementation outperforms other methods in terms of modularity, especially
when the target layer that receives transferred knowledge is noisy (e.g. much sparser than
other layers). We further evaluate our algorithm in high-level noisy conditions by ran-
domly removing a set of edges in the target layer. It is shown that our algorithm is very
robust against noise, retaining as high as 83.7% of its original performance even when

half of the edges are removed, while other methods can only retain about 50%.
4.2 Future Work

Future research can consider other implementations of the learning and clustering
algorithms for more efficiency and accuracy, as well as ability to handle other types of
network (e.g. directed and weighted network, temporal network, heterogeneous network,
etc). Another interesting direction is to deal with ‘negative transfer’ in the community

detection context.
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Finding community structure in networks using the eigenvectors of matrices

M. E. J. Newman
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We consider the problem of detecting communities or modules in networks, groups of vertices with a
higher-than-average density of edges connecting them. Previous work indicates that a robust approach to this
problem is the maximization of the benefit function known as “modularity” over possible divisions of a
network. Here we show that this maximization process can be written in terms of the eigenspectrum of a matrix
we call the modularity matrix, which plays a role in community detection similar to that played by the graph
Laplacian in graph partitioning calculations. This result leads us to a number of possible algorithms for
detecting community structure, as well as several other results, including a spectral measure of bipartite
structure in networks and a centrality measure that identifies vertices that occupy central positions within the
communities to which they belong. The algorithms and measures proposed are illustrated with applications to

a variety of real-world complex networks.

DOI: 10.1103/PhysRevE.74.036104

L. INTRODUCTION

Networks have attracted considerable recent attention in
physics and other fields as a foundation for the mathematical
representation of a variety of complex systems, including
biological and social systems, the Internet, the worldwide
web, and many others [1-4]. A common feature of many
networks is “community structure,” the tendency for vertices
to divide into groups, with dense connections within groups
and only sparser connections between them [5,6]. Social net-
works [5], biochemical networks [7-9], and information net-
works such as the web [10] have all been shown to possess
strong community structure, a finding that has substantial
practical implications for our understanding of the systems
these networks represent. Communities are of interest be-
cause they often correspond to functional units such as
cycles or pathways in metabolic networks [8,9,11] or collec-
tions of pages on a single topic on the web [10], but their
influence reaches further than this. A number of recent re-
sults suggest that networks can have properties at the com-
munity level that are quite different from their properties at
the level of the entire network, so that analyses that focus on
whole networks and ignore community structure may miss
many interesting features.

For instance, in some social networks one finds individu-
als with different mean numbers of contacts in different
groups; the individuals in one group might be gregarious,
having many contacts with others, while the individuals in
another group might be more reticent. An example of this
behavior is seen in networks of sexual contacts, where sepa-
rate communities of high- and low-activity individuals have
been observed [12,13]. If one were to characterize such a
network by quoting only a single figure for the average num-
ber of contacts an individual has, one would be missing fea-
tures of the network directly relevant to questions of scien-
tific interest such as epidemiological dynamics [14].

It has also been shown that vertices’ positions within
communities can affect the role or function they assume. In
social networks, for example, it has long been accepted that
individuals who lie on the boundaries of communities,
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bridging gaps between otherwise unconnected people, enjoy
an unusual level of influence as the gatekeepers of informa-
tion flow between groups [15-17]. A surprisingly similar re-
sult is found in metabolic networks, where metabolites that
straddle the boundaries between modules show particular
persistence across species [8]. This finding might indicate
that modules in metabolic networks possess some degree of
functional independence within the cell, allowing vertices
central to a module to change or disappear with relatively
little effect on the rest of the network, while vertices on the
borders of modules are less able to change without affecting
other aspects of the cellular machinery.

One can also consider the communities in a network
themselves to form a higher-level metanetwork, a coarse-
grained representation of the full network. Such coarse-
grained representations have been used in the past as tools
for visualization and analysis [18] but more recently have
also been investigated as topologically interesting entities in
their own right. In particular, networks of modules appear to
have degree distributions with interesting similarities to but
also some differences from the degree distributions of other
networks [9] and may also display so-called preferential at-
tachment in their formation [19], indicating the possibility of
distinct dynamical processes taking place at the level of the
modules.

For all of these reasons and others besides there has been
a concerted effort in recent years within the physics commu-
nity and elsewhere to develop mathematical tools and com-
puter algorithms to detect and quantify community structure
in networks. A huge variety of community detection tech-
niques have been developed, based variously on centrality
measures, flow models, random walks, resistor networks, op-
timization, and many other approaches [5,8,9,18,20-35]. For
reviews see Refs. [6,36].

In this paper we focus on one approach to community
detection that has proven particularly effective, the optimiza-
tion of the benefit function known as “modularity” over
the possible divisions of a network. Methods based on this
approach have been found to produce excellent results
in standardized tests [36,37]. Unfortunately, exhaustive
optimization of the modularity demands an impractically
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